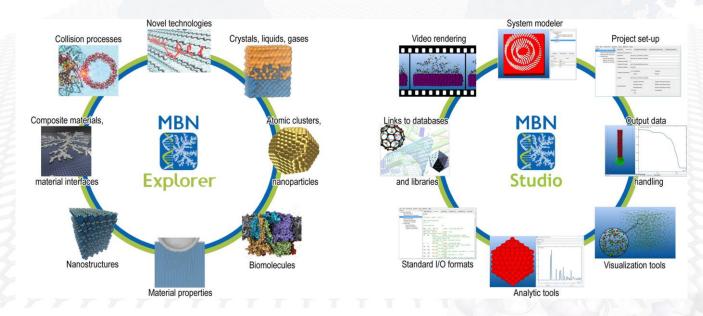
Training course on Multiscale Computational Methods for Complex Molecular Systems

Università degli Studi di Ferrara Ferrara, Italy October 26 - 27, 2017


ANNOUNCEMENT

Scope

The training course on Multiscale Computational Methods for Complex Molecular Systems will be held at the Università degli Studi di Ferrara (Ferrara, Italy) on October 26-27, 2017. It will be preceded by the Workshop of the H2020-RISE-PEARL project "Periodically Bent Crystals for Crystalline Undulators", which will be held during October 23-25.

The hands-on tutorial aims at exploring physical models and computational approaches used for the simulations of Meso-Bio-Nano (MBN) systems and the investigation of their structure and dynamics at the atomic level of detail. The course is based on practical exercises with the universal computational package MBN Explorer and MBN Studio - a special graphical user interface and multitask toolkit for MBN Explorer. The tutorial will be performed with the latest release 3.0 of MBN Explorer and MBN Studio announced officially by MBN Research Center in March 2017.

Figures below illustrate the main areas of application of MBN Explorer and the key features of MBN Studio.

In particular, the case studies of atomic clusters, nanoparticles, biomolecular systems, nanomaterials, composite materials and material interfaces, crystalline, liquid and gaseous systems, thermo-mechanical properties of materials, dynamical, collision, chemical and irradiation driven multiscale phenomena will be discussed. Relevant physical concepts, mathematical techniques and computational methods will be introduced, including force fields and algorithms used in molecular modeling, molecular dynamics and Monte Carlo simulations on parallel computers. Special attention will be devoted to modeling crystalline structures, propagation of relativistic projectiles in crystals, quantitative analysis of the channeling and related phenomena.

The tutorial is designed for graduate students, postdoctoral researchers and staff in computational and/or bio/nanophysical and chemical fields, material science, radiochemistry and radiobiology who seek to extend their research skills to include computational and theoretical expertise, as well as for all other researchers interested in theoretical and computational physics and chemistry.

Important Dates

Registration deadline: September 15, 2017

Acceptance of the registered participants for the tutorial: September 22, 2017

Program

Thursday, October 26

10:00 - 10:15	Training course opening
10:15 - 11:00	Basics of MBN Explorer and MBN Studio
	Short description of main features of MBN Explorer and MBN Studio: universality, tuneable
	force fields, multiscale approach, computational efficiency, etc.; areas of application of MBN
	Explorer and MBN Studio
11:00 - 11:20	Coffee break
11:20 - 11:50	Setting up the calculation
	Specification of input files and formats, and instructions on how to run MBN Explorer
11:50 - 12:50	MBN Studio
	An introduction to MBN Studio - a multipurpose toolkit for MBN Explorer - and an overview
	of its main features; overview of the MBN Explorer examples library, which contains the trial
	case studies representing certain physical experiments and demonstrating capacities of the
	program
12:50 - 14:00	
	Gases, liquids, crystals
14:00 - 15:00	Description of setting up simulations of gaseous, liquid and crystalline media with MBN
	Explorer; different types of boundary conditions; energy and temperature control in MBN
	Explorer
15:00 - 16:00	Atomic clusters and nanoparticles
16.00 16.20	construction of clusters and nanoparticles with MBN Studio
16:00 - 16:30	
16:30 - 17:30	Biomolecular systems Exploration of dynamical processes with biomolecular systems, use of the molecular
	Exploration of dynamical processes with biomolecular systems; use of the molecular mechanics potential for setting up calculations of biomolecular systems; simulation of bond
	breakage processes in biomolecular systems using MBN Explorer
	Collision and irradiation induced processes
17:30 - 18:30	•
	molecular systems and materials
19:30 - 20:00	•
17.50 20.00	ZiiiiVi

Friday, October 27

,		
9:30 - 10:30	Multiscale modeling: composite materials and material interfaces	
	Application of the kinetic Monte Carlo method for simulations of fractal structures growth	
	and their post-growth relaxation	
10:30 - 11:30	Nanostructured materials	
	Application of classical MD for simulations of carbon-based nanomaterials	
11:30 - 12:00	Coffee break	
12:00 - 13:00	Thermo-mechanical properties of materials	
	Investigation of thermo-mechanical properties of crystalline, nanostructured and amorphous	
	materials by means of MD simulations of the nanoindentation process	
13:00 - 14:00	Lunch	

14:00 - 16:00	Propagation of particles through medium
	MD simulations of particles propagation through media (heterocrystalline structures, bent
	crystals, amorphous materials, solids, nanotubes, biological environment, etc.); modeling of
	particles' propagation in crystalline media by means of Geant4
16:00 - 16:30	Coffee break
16:30 - 17:30	Irradiation induced transformations of biomolecular systems
	Exploration of dynamical processes related to the irradiation induced thermo-mechanical
	damage of molecular and biomolecular systems
17:30 - 18:30	Modeling of focused electron beam-induced deposition
	Introduction to the concept of irradiation-driven molecular dynamics; MD simulations of the
	focused electron-beam induced deposition process
18:30 - 18:45	Tutorial closing and concluding remarks

Registration and Fee

The fee for participation in the training course is 50 Euro. The payment to the order of "Training course in Ferrara" should be made **by bank transfer** to:

Bank Account Name: MBN Research Center gGmbH

Bank Name: Deutsche Bank

Branch Address: Hauptstr. 5, 61462 Koenigstein, Germany

IBAN: DE15500700240137588000

BIC: DEUTDEDBFRA

Please quote your NAME and "MBN Training" on the transfer. Please ensure there are NO charges to us.

All the participants are requested to register electronically by filling in the registration form in the training course webpage:

http://mbnresearch.com/tutorial-7-registration

Since the number of tutorial participants is limited to 20, the registration for the tutorial will be closed automatically once the maximum possible number of registrations will be reached.

All the attendees of the tutorial will receive the e-book of MBN Explorer and MBN Studio Tutorials, one-month license for running MBN Explorer and MBN Studio, and Tutorial files. Coffee and other drinks will be served during the breaks.

Attendees are assumed to cover travel and accommodation expenses themselves. The list of the recommended hotels in the vicinity of the tutorial venue can be found below. Dinner will be arranged on Thursday, October 26th evening for all the participants.

Venue and Travel Information

The tutorial will be held at the Università degli Studi di Ferrara, via Savonarola, Ferrara, Italy. The University is located in the historical center of the World Heritage medieval city of Ferrara. You can get to Ferrara

By plane from:

- <u>Bologna airport "Guglielmo Marconi"</u> is located 35 km from Ferrara (about 30 minutes by car). The region has a new flybus service between Bologna airport and Ferrara called "bus&fly" (http://www.ferrarabusandfly.it/).

Ferrara/ Bologna rail line is direct (<u>www.trenitalia.it</u>); the airport is connected to the train station by means of a direct bus system named "aerobus" and provides direct flights to the most important Italian and European cities all year. For further information see www.bologna-airport.it.

- <u>Venice airport "Marco Polo"</u> is located 116 km from Ferrara (about 1 hour and 15 minutes by car). Ferrara/Venice rail line is direct (www.trenitalia.it); the airport is connected to the train station by means of a direct bus system named "flybus" and provides direct flight to the most important Italian and European cities all the year. For further information see www.veniceairport.it.
- <u>Verona airport "Valerio Catullo"</u> is located 106 km far from Ferrara (about 1 hour and 20 minutes). Ferrara/Verona rail line is not direct, it is necessary to change train in Padua or Bologna (<u>www.trenitalia.it</u>); the airport is connected to the train station by means of a direct bus system and provides direct flights to the most important Italian and European cities all year. For further information see <u>www.aeroportoverona.it</u>

By train:

All important information can be found at www.trenitalia.it. The train station of Ferrara is not far away from the city center.

Accommodation

The organizers recommend the tutorial attendees to book their accommodation in the following hotels located close to the tutorial venue:

- Hotel Annunziata
- Hotel Carlton
- Hotel Turing
- Hotel Europa
- Hotel De Prati

Official Invitation and Visa

Training course participants are advised to check the passport and visa requirements for travel to Italy well in advance.

Training Course Language

The language of the training course is English.

Tutorial Organizers

Dr. Laura Bandiera

Istituto Nazionale di Fisica Nucleare (INFN) Ferrara

E-mail: bandiera@fe.infn.it

Dr. Alexey Verkhovtsev and Prof. Dr. Andrey V. Solov'yov

MBN Research Center at FiZ - Frankfurt Innovation Center of Biotechnology

Altenhöferallee 3, 60438 Frankfurt am Main

E-mail: solovyov@mbnresearch.com

Contact Information

For further information please visit the training course page: mbnresearch.com/tutorial-7-scope or write an e-mail to team@mbnexplorer.com