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Gaveau J, Berret B, Demougeot L, Fadiga L, Pozzo T,
Papaxanthis C. Energy-related optimal control accounts for grav-
itational load: comparing shoulder, elbow, and wrist rotations. J
Neurophysiol 111: 4 –16, 2014. First published October 16, 2013;
doi:10.1152/jn.01029.2012.—We permanently deal with gravity
force. Experimental evidences revealed that moving against grav-
ity strongly differs from moving along the gravity vector. This
directional asymmetry has been attributed to an optimal planning
process that optimizes gravity force effects to minimize energy.
Yet, only few studies have considered the case of vertical move-
ments in the context of optimal control. What kind of cost is better
suited to explain kinematic patterns in the vertical plane? Here, we
aimed to understand further how the central nervous system (CNS)
plans and controls vertical arm movements. Our reasoning was the
following: if the CNS optimizes gravity mechanical effects on the
moving limbs, kinematic patterns should change according to the
direction and the magnitude of the gravity torque being encoun-
tered in the motion. Ten subjects carried out single-joint move-
ments, i.e., rotation around the shoulder (whole arm), elbow
(forearm), and wrist (hand) joints, in the vertical plane. Joint
kinematics were analyzed and compared with various theoretical
optimal model predictions (minimum absolute work-jerk, jerk,
torque change, and variance). We found both direction-dependent
and joint-dependent variations in several kinematic parameters.
Notably, directional asymmetries decreased according to a proxi-
modistal gradient. Numerical simulations revealed that our exper-
imental findings could be attributed to an optimal motor planning
(minimum absolute work-jerk) that integrates the direction and the
magnitude of gravity torque and minimizes the absolute work of
forces (energy-related cost) around each joint. Present results
support the general idea that the CNS implements optimal solu-
tions according to the dynamic context of the action.

sensorimotor control; reaching movement; gravity force; optimal
control; proximal; distal

WE PERMANENTLY INTERACT WITH gravity force. How the central
nervous system (CNS) deals with the dynamic effects of
gravity is an important issue in motor neuroscience. Several
psychophysical studies have emphasized the preponderant role
of gravity force on motor control. For instance, it has been
proposed that the CNS uses an internal model of gravity
acceleration to supplement sensory information when estimat-
ing time to contact with an approaching object (McIntyre et al.

2001). In addition, recent results on sensorimotor adaptation
occurring after a space flight indicated that a misrepresentation
of gravity force strongly influenced the motor planning process
of arm movements (Gaveau et al. 2011).

It is appealing that the CNS plans vertical movements in a
particular way: moving against gravity dramatically differs
from moving along the gravity vector. Precisely, accumulative
results have shown that upward movements have greater cur-
vature, greater peak of acceleration, and shorter acceleration
time than downward movements (Atkeson and Hollerbach
1985; Papaxanthis et al. 1998b, 2003b). Unequivocal experi-
mental evidences argue in favor of a gravity-related origin for
these particular kinematic patterns. Direction-dependent kine-
matic asymmetries have been observed for vertical (up vs.
down) but not horizontal (left vs. right) monoarticular arm
movements (Gentili et al. 2007; Le Seac’h and McIntyre 2007).
Kinematic asymmetries progressively attenuated during expo-
sure to microgravity in such a way that vertical arm kinematics
became symmetric for both directions (Papaxanthis et al.
2005). Additionally, Sciutti et al. (2012) have recently shown
that rightward/leftward horizontal arm movements became
directionally asymmetric when visual feedback of movement
was artificially rotated by 90°. Last, because directional asym-
metries appear very early in the movement, they likely result
from feedforward processes (Gaveau and Papaxanthis 2011).

It has been proposed that such kinematic asymmetries are
the outcome of a dynamic planning process minimizing an
energy-related criterion and taking into account the dynamic
interaction of the body with the environment (Berret et al.
2008a). This idea, which implies that both the direction and the
magnitude of gravity torque are integrated into the motor plan
of arm movements, is functionally advantageous: the optimi-
zation of gravity mechanical effects (gravity torque direction
and magnitude) reduces energetic costs during movement im-
plementation. However, if the CNS optimizes arm movement
dynamics in the vertical plane, kinematic patterns should
change according to movement context, and, therefore, asym-
metric patterns should not be an invariant feature of all vertical
movements. This can be simply illustrated in the context of
single-joint movements. During single-joint displacements of
similar direction and amplitude, gravity torque varies accord-
ing to the segment involved in the motion: it decreases for
whole arm, vs. forearm, vs. hand movements. Therefore, as a
trajectory optimal for a limb segment may be nonoptimal for
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another limb segment, one would expect kinematic asymme-
tries to be modulated according to the limb segment involved
in the action. Precisely, as gravity torque decreases according
to a proximodistal gradient, the directional asymmetry should
decrease, too.

In the present study, we intended to understand further how
the CNS plans and controls movements in the vertical plane.
Does an optimal integration of gravity into the motor plan
produce asymmetric patterns in different movement contexts?
What kind of optimization cost is best suited to explain
kinematic patterns in the vertical plane? Various cost functions
have been used to reproduce kinematic patterns of arm move-
ments in the context of optimal control. The resulting models
can be coarsely classified as kinematic (Ben-Itzhak and Karniel
2008; Flash and Hogan 1985), dynamic (Nakano et al. 1999;
Uno et al. 1989), energy-related (Berret et al. 2008a; Gaveau et
al. 2011; Soechting et al. 1995), or, more loosely, effort-related
(Crevecoeur et al. 2009; Guigon et al. 2007; Harris and
Wolpert 1998; Todorov and Jordan 2002). Some of them were
derived in a stochastic context, but for the purpose of this paper
it is sufficient to stick to a deterministic context. Although
numerous studies focused on movements performed in the
horizontal plane, very few studies attempted to address the case
of vertical movements, mainly using energy-related or effort-
related cost functions. We asked 10 participants to perform
upward and downward single-joint movements around the
shoulder, elbow, and wrist. Upward and downward movements
allowed testing the effect of gravity torque direction, whereas
movements with the different joints allowed testing the
gravity torque magnitude effects. We compared the kine-
matic patterns between directions and joints as well as with
theoretical predictions based on the optimization of four
different criteria (minimum absolute work-jerk, minimum
jerk, minimum torque change, and minimum variance).

METHODS

Participants

Ten male adults [mean age � 23.8 � 1.8 (SD) yr; mean weight �
72.6 � 6.8 kg; mean height � 176.2 � 7.2 cm] volunteered to
participate in this study. All were right-handed (Edinburgh Handed-
ness Inventory; Oldfield 1971), in good health, with normal or
corrected-to-normal vision, and did not present any neurological or
muscular disorders. The regional ethics committee of Burgundy
(C.E.R.) approved the experimental protocol, which was carried out in
agreement with legal requirements and international norms (Declara-
tion of Helsinki, 1964).

Motor Task and Experimental Protocol

Participants were asked to perform single-joint movements in a
parasagittal plane with their fully extended arm (rotation around the
shoulder), their forearm (rotation around the elbow), or their hand
(rotation around the wrist). We chose movements with 1 degree of
freedom (dof) to isolate and to emphasize the mechanical effects of
gravity [as in Gentili et al. (2007) and Le Seac’h and McIntyre
(2007)]. During single-joint vertical arm movements, inertia (i.e., the
distribution of the arm mass around the shoulder in a body-fixed
coordinate system) remains constant, and thus inertial torque is related
only to joint acceleration. On the contrary, gravity torque in the
sagittal plane significantly changes according to the movement direc-
tion and to the joint involved in the motion. Note that during
single-joint movements, interaction torque may also influence motion

dynamics. For example, during motion of the elbow joint, inertial
interaction torques may arise at the shoulder and wrist joints because
of elbow acceleration and deceleration. In the present study, we
verified that interaction torque cannot account for any kinematic
differences between joints and directions. First, we confirmed that
joint motion was restricted to the focal joint only (see Data Process-
ing below). Second, by restraining elbow and wrist joints with splints,
we also confirmed that directional asymmetries at the shoulder joint
are not the result of asymmetric inertial interaction torques (see
control experiment A below).

Participants sat in a chair with their trunk aligned in the vertical
position and supported by the back of the chair (Fig. 1A). Three
targets (plastic spheres, 1-cm diameter) were positioned at a distance
equal to the length of each segment. The middle of the targets (initial
target, IT) was horizontally aligned with the center of rotation of each
joint. The other two targets were placed at an angle of 35° upward
(UT, target) and 35° downward (DT, target) taking as reference the
horizontal line formed by the length of the segments and the IT.
Before shoulder-joint movements, the arm was kept horizontal (shoul-
der elevation 90° and shoulder abduction 0°), the elbow was fully
extended, and the semipronated hand was aligned with the upper arm
and the forearm. Before elbow movements, the upper arm was vertical
(shoulder elevation 0° and shoulder abduction 0°), the elbow was
flexed at 90°, and the semipronated hand was aligned with the
forearm. Before wrist-joint movements, the upper arm was vertical
(shoulder elevation 0° and shoulder abduction 0°), the elbow was
flexed at 90°, and the palm of the hand was oriented downward. In a
preliminary study, we obtained similar results for wrist movements
performed with the palm oriented upward or downward. Therefore,
for simplicity reasons, we reported here results of hand movements
with the palm oriented downward. Note that wrist movements were
not realized with the same initial position (i.e., semipronation) as the
one used during shoulder and elbow movements. Our aim was to
allow large movement amplitudes and consequently to emphasize the
importance of gravity torque over the whole wrist dynamics. Flexion-
extension of the wrist present smaller stiffness and larger amplitude
than radioulnar deviations (Charles and Hogan 2012; Crisco et al.
2011; Formica et al. 2012).

From these initial positions, participants were requested to perform
as fast as possible and uncorrected visually guided arm movements
toward the UT and the DT. They were informed that final accuracy
was not the primary goal of the task. Movements were carried out in
a block design (shoulder, elbow, and wrist), which was counterbal-
anced across participants. Within each block of shoulder, elbow, and
wrist movements, participants accomplished 24 trials (12 upward and
12 downward) in a random order. To prevent fatigue, blocks were
separated by a 5-min interval. In addition, a short rest period (�10 s)
separated each trial. The experiments were performed under normal
lighting conditions.

Kinematics Recording

Kinematics were recorded by means of an optoelectronic device
(SMART-BTS; BTS Bioengineering, Milan, Italy). Five cameras
(120-Hz sampling frequency) were used to record the displacements
of five reflective markers (10 mm in diameter) placed on the right
shoulder (acromial process), elbow (humeral lateral condyle), wrist
(ulnar styloid process), hand (1st metacarpophalangeal joint), and
index finger (nail).

Data Processing

Data processing was performed using custom MATLAB programs
(MathWorks, Natick, MA). Kinematic signals were low-pass filtered
(5-Hz cutoff frequency) using a digital fifth-order Butterworth filter
(zero-phase distortion, “butter” and “filtfilt” functions). Three-dimen-
sional velocity signals were inspected to ensure that they were
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single-peaked. Angular displacements were also inspected to verify
that participants performed 1-dof movements (�4% of all trials) with
the required joint (shoulder, elbow, or wrist). Joint movements were
discarded from further analysis when they presented multiple local
maxima and/or a rotation (�3°) to other than the requested joint.

We defined movement onset and offset with a threshold of 10% of
the maximal angular velocity. Angular kinematics were then charac-
terized by calculating the following parameters (Fig. 1B): 1) move-
ment duration (MD); 2) amplitude of joint angular displacement;
3) peak acceleration (PA) and time to peak acceleration (tPA); 4) peak
velocity (PV) and time to peak velocity (tPV); and 5) peak deceler-
ation (PD) and time to peak deceleration (tPD). From these parame-
ters, we calculated three invariant parameters to characterize kine-
matic patterns: 1) relative time to peak acceleration (rtPA � time to
peak acceleration/movement time); 2) relative time to peak velocity
(rtPV � time to peak velocity/movement time); and 3) relative time to
peak deceleration (rtPD � time to peak deceleration/movement time).
These parameters are termed invariant because they can, theoretically,
remain constant across experimental conditions if the brain appropri-
ately scales joint torques and movement speed (Atkeson and Holler-
bach 1985; Hollerbach and Flash 1982). Here, they have been used as
“tools” to examine whether participants produce similar kinematic
patterns for the different joint and direction conditions. In addition, to
make qualitative comparisons between joints and directions, we nor-
malized the velocity profiles in time (cubic spline function; Math-
Works) and amplitude (velocity time series divided by maximal
velocity). Normalization guarantees that velocity profiles are indepen-
dent of joint amplitude, time, and maximal velocity. Last, to illustrate
directional differences between upward vs. downward arm move-
ments, we computed the ratio of directional asymmetry [(Down �
Up)/Down � 100] for the different kinematic parameters.

Statistical Analysis

We checked that kinematic variables were normally distributed
(Shapiro-Wilk W test) and that sphericity was respected (Mauchly
tests). Kinematic parameters were compared by means of ANOVA
with joint (shoulder, elbow, and wrist) and direction (upward and
downward) as within-subject factors (level of significance, P � 0.05).
Post hoc differences were assessed by means of Scheffé tests (level of
significance, P � 0.05).

Optimal Movement Simulations

Minimum absolute work-jerk model. Previous studies have shown
that minimizing mechanical energy expenditure while maximizing
joint smoothness is a suitable optimization method for replicating
kinematic features of vertical arm movements. This model has been
described in depth in the context of direct/inverse deterministic and
stochastic optimal control of single or multijoint arms (Berret et al.
2008a, 2011a; Gaveau et al. 2011). In our study, we took advantage of
this model to simulate shoulder, elbow, and wrist movements. We
used the following equations of dynamics, � being the angle between
the segment and the horizontal axis:

�ag � �ant � I�̈ � B�̇ � GT(�) (1)

��̇ag � �uag � �ag (2)

��̇ant � �uant � �ant. (3)

The first equation describes the equation of motion for a single-joint
with moment of inertia (I), viscous friction coefficient (B � 0.87; see
Nakano et al. 1999), gravitational torque [GT(�) � m·g·r·cos�],
gravitational acceleration (g � 9.81 m/s2), mass of the limb (m), and
the distance between the center of rotation and the center of mass of
the joint (r). The constant � is a gain factor that scales muscle
activation to joint torques (� � 100). The last two equations describe

muscle dynamics for a pair of agonist/antagonist muscles as a first-
order low-pass filter. Anthropometric parameters were adjusted for
each subject based on their mass, height, and limb lengths (Winter
1990).

The control variable can be thought as the motor neuron inputs to
the muscles; respectively, uag (agonist) and uant (antagonist). We add
the constraint (uag, uant) � [0,1]2, which enforces the positivity of
muscle activations; therefore, muscle torques are generating by emu-
lating the “pull-only” behavior of human muscles. The net torque
acting at the shoulder joint is simply obtained by subtracting the
agonist and antagonist torques (i.e., �ag � �ant).

The absolute work-jerk model relies on the following cost function:

C � �
0

MD

	�ag�̇	�	�ant�̇	 � 
�d�̈ ⁄ dt�2
dt (4)

where 
 is a weighting factor to normalize the relative magnitude of
the jerk term in the total cost function. Since during reaching move-
ments the smoothness cost usually assumes values higher than the
energetic cost, we chose 
 � 0.004 and kept this value constant for all
simulations. We nevertheless checked that the results presented in this
paper are not significantly affected by variations of this factor (rang-
ing from 0.001 to 0.1).

The optimal control problem is then formulated in the following
way: find a control vector (uag, uant) driving the system from an initial
equilibrium posture �0 to a terminal equilibrium posture �T in time
MD while yielding a minimum cost value C. This optimal control
problem was solved numerically using a Gauss pseudospectral
method and the open-source software GPOPS (Benson et al. 2006;
Garg et al. 2010; Rao et al. 2010).

A posteriori verifications showed that the control variable was
smooth and that the boundary values were not reached. We also
checked that the Pontryagin’s maximum principle necessary condi-
tions were verified (such as the constancy of the Hamiltonian). This
model reproduces, in a stable and robust way, the up/down asymme-
tries for full-extended arm movements in the vertical plane. It is
important to note that these asymmetries are related to energetic
considerations as it is well-known that the minimum jerk, alone,
always predicts symmetric velocity profiles (Flash and Hogan 1985).

Minimum jerk and minimum torque change models. We performed
numerical simulations for the minimum jerk (Flash and Hogan 1985)
and the minimum torque change (Uno et al. 1989) models. We will
not describe in depth these models since this was already done in
numerous papers.

In the minimum jerk model, the objective function to be minimized
is expressed by:

Cj � �
0

MD �d3x

dt3 �2

� �d3y

dt3 �2

dt (5)

where x and y are the time-dependent hand position coordinates.
In the minimum torque change model and minimum commanded

torque change model, the objective function to be minimized is
expressed by:

C� � �
0

MD �d�ag

dt �2

� �d�ant

dt �2

dt . (6)

Minimum variance model in the gravity field. We derived the
solution of the minimum variance model (Harris and Wolpert 1998) in
the gravity field. To simplify derivations, we assume here that the
gravitational torque is constant throughout a movement, which is a
reasonable assumption since gravity torque only varies slightly for the
movement amplitude we considered (�18% in average; see RESULTS).

In this model, motor noise affects the dynamics, and noise variance
is assumed to scale with the control amplitude (here, we chose a factor
of 20%), which is known as signal-dependent noise (Harris and
Wolpert 1998). The cost to be minimized corresponds to the endpoint
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positional variance accumulated on some post-MD window. In our
simulations, we considered that the postmovement duration was equal
to the movement duration itself. It is known that the postmovement
duration may affect the symmetry ratio of the velocity profile (Tanaka
et al. 2004), but here we were mainly interested in checking for the
presence of directional differences (up vs. down) in the endpoint
velocity profiles. The minimum variance problem was solved using
the fmincon function in MATLAB with an interior-point method.

Comparison Between Experimental and Simulated Data

To compare the velocity profiles predicted by the different optimal
criteria with those recorded experimentally, we calculated the mean
square error (MSE) after normalizing all velocity profiles in amplitude
and duration:

MSE�
1

MD �
0

MD

�Vexp � Vopt�2dt (7)

where Vexp and Vopt are, respectively, the recorded experimental and
simulated optimal velocities. We used two-tailed paired t-test to
compare the MSE of minimum absolute work-jerk model with the
MSE of the other models. This analysis was performed for each joint
and direction separately. Using the same analysis, we also compared
the predicted ratio of directional asymmetry for all parameters (tPA,
PA, tPV, PV, and tPD) with the same ratio computed from experi-
mental data. For both analyses, the level of significance was P � 0.05.

Control Experiments

A: shoulder rotations with elbow and wrist joints frozen. Previous
studies have observed directional kinematic asymmetries for shoulder
rotations in the vertical plane. These kinematic asymmetries have
been attributed to gravity effects. However, because during such
movements inertial interaction torque at the elbow is substantial and
asymmetric, due to the limited range of motion of the elbow joint, one
might ask whether kinematic asymmetries could not emerge from the
simple influence of interaction torques. Indeed, extensor muscle
activation will be required to counteract inertial interaction torques
(i.e., to keep the elbow at a constant angle) during upward movement
deceleration and downward movement acceleration. However, since
the elbow is already maximally extended in the starting position, no
reciprocal activation of flexor muscles is needed to counteract inertial
interaction torques during upward movement acceleration and down-
ward movement deceleration.

Multiple results from the literature do not corroborate this hypoth-
esis. Le Seac’h and McIntyre (2007) asked 11 subjects to perform
single-joint shoulder flexion/extension and abduction/adduction in 2
different body positions: standing up and reclined on the side. Results
showed that flexion/extension as well as abduction/adduction are
asymmetric when performed in the vertical plane (flexion/extension
while standing up and abduction/adduction while reclined on the side)
and symmetric when performed in the horizontal plane (flexion/
extension while reclined on the side and abduction/adduction while
standing up). Whereas interaction torque at the elbow differed be-
tween flexion and extension (because of the elbow range of motion
limits), kinematic asymmetries were only observed in the vertical
plane. Also, whereas interaction torque at the elbow is null for both
abduction and adduction, kinematics asymmetries were observed in
the vertical plane but not in the horizontal plane. Additionally,
experiments performed in microgravity have shown that monoarticu-
lar shoulder rotations (without restraining elbow or wrist joints)
become progressively symmetric (Gaveau et al. 2009).

Here, to test specifically that asymmetric inertial interaction torque
at the elbow did not produce directional kinematic asymmetries, we
asked three subjects (all males; mean age � 25.3 � 1.15 yr; mean
weight � 70 � 6.2 kg; mean height � 179 � 6.08 cm), who did not

participate in the main experiment, to perform shoulder rotations
while they wore splints restraining both their elbow and wrist joints.
Assuming that splints perfectly prevent joint motion at the elbow and
wrist joints (the experimenters physically verified that no motion was
allowed in any plane), shoulder rotations were not anymore subject to
interaction torques at the distal joints (here, we neglect finger inter-
action torques). Experimental procedures and data analysis were
similar to the main experiment.

B: elbow rotations with an additional load. Six right-handed adults
(4 males; mean age � 25.2 � 1.1 yr; mean weight � 69.6 � 4.7 kg;
mean height � 171.6 � 4.4 cm) who did not participate in the
previous experiments took part in control experiment B. Our pur-
pose was to examine whether an increase in the gravitoinertial torque
magnitude could change the control processes at a given limb. We
expected that if gravity torque is taken into account by the CNS so as
to optimize movement control, increasing the gravitoinertial torque at
the elbow joint should change kinematic parameters toward those
observed for the proximal shoulder joint. To this aim, subjects were
required to perform elbow rotations under two different load condi-
tions: without any additional load (NL) and with an additional load
corresponding to 30% of their estimated forearm mass (L). The
additional load was fixed on the center of mass of each participant’s
forearm. Apparatus, instructions, recordings, and data processing
were similar to those of the main experiment. Because not all
variables showed a normal distribution (Shapiro-Wilk W test), we
performed nonparametric test (Wilcoxon). We also performed optimal
simulations for control experiment B. We used the same model as
described above in the main section; we only adapted anthropometric
parameters for the new subjects as well as for the additional load
condition. We used the same nonparametric test (Wilcoxon) to com-
pare simulated results between them as well as with experimental
results.

C: accounting for interaction torques with a multijoint model. In
the main study, movements were considered as single-joint due to the
task instruction, and thus each limb could be represented as a single
rigid body rotating around its proximal joint. However, the true
mechanical problem posed to the CNS is multijoint and also includes
the control of interaction torques to maintain the position of other
body parts constant. For instance, for an elbow flexion, the CNS
possibly attempts to freeze the shoulder joint by counteracting the
inertial effects due to forearm rotation. To account for the existence of
interaction torques, we tested the robustness of our theoretical results
in the case of a 2-dof arm model. Note that modeling the arm as a
3-dof system would uselessly complicate computations since wrist
movements are dominated by stiffness and gravity torque (Charles
and Hogan 2011). Because our optimal control model minimizes a
dynamic cost and interaction torques are acceleration-dependent and
velocity-dependent, one could ask whether taking into account these
interaction torques could change the model predictions. Intuitively,
since the shoulder joint does not move as it is frozen, shoulder torque
will not work, and shoulder angle jerk will be 0. Thus the overall cost
should be unchanged. Yet, only real simulations can reveal the
complete optimal strategy for such 2-dof movements. Hence, for each
joint, we performed new simulations with the additional constraint to
stabilize another joint.

RESULTS

General Features

Overall, all participants followed our instruction to perform
movements as fast as possible; all conditions combined, the
average MD was 0.35 � 0.06 s (SD). Furthermore, although
final accuracy was not the primary constraint in our experi-
ment, all participants performed accurate joint movements: all
conditions combined, the average amplitude was 34.19 �
1.05°. ANOVA did not reveal any main or interaction effects
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for joint amplitude (for all analyses, P � 0.4). Figure 1A
illustrates typical joint displacements for the upward and
downward directions. The average initial gravitational torque
was 14.3 � 1.94 N·m for the shoulder, 5.83 � 0.86 N·m for the
elbow, and 0.43 � 0.05 N·m for the wrist. In addition, due to
the symmetric location of UT and DT with respect to the
horizontal axis, gravitational torque similarly decreased during
an upward and a downward movement within each joint.
Specifically, the average decrease in gravitational torque was
2.59 � 0.35 N·m for the shoulder, 1.10 � 0.16 N·m for the
elbow, and 0.07 � 0.01 N·m for the wrist.

Kinematic Features

All participants carried out pointing movements with single-
peaked velocity profiles (Fig. 1A) and equivalent times (Fig.
2A). The same was true for the PD (Fig. 2D), which was not
affected by the different factors. ANOVA did not reveal any
main or interaction effects for either MD (P � 0.2) or PD
(P � 0.5). Other kinematics parameters, however, markedly
differed across joints and directions.

PV (Fig. 2B). ANOVA revealed an interaction effect be-
tween joint and direction for PV (F2,18 � 9.98, P � 0.002).

Shoulder joint Elbow joint Wrist joint 

Kinematic Analysis 

PA

PD

MD

PV

tPA tPV tPD

JA

Initial joint positions and typical Kinematic dataA B
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Fig. 1. A: initial position of participant’s shoulder, elbow, and wrist joints. Subject performed as fast as possible 1-degree-of-freedom pointing movements
between targets in the vertical plane. Typical hand paths as well as joint paths and velocity profiles are depicted for upward (black) and downward (gray)
movements. B: illustration of the kinematic analysis. JA, joint amplitude; PA, peak acceleration; PD, peak deceleration; PV, peak velocity; tPA, time to peak
acceleration; tPD, time to peak deceleration; tPV, time to peak velocity; MD, movement duration.
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Post hoc tests revealed directional differences for the shoulder
(P � 0.001) and elbow (P � 0.02) joints but not for the wrist
(P � 0.9). Furthermore, PV of the shoulder was greater than
PV of the elbow and wrist in upward direction (in all cases,
P � 0.01), whereas no differences between joints were found
in downward direction (in all cases, P � 0.5).

PA (Fig. 2C). There was an interaction effect between joint
and direction for PA (F2,18 � 11.20, P � 0.001). Post hoc
comparisons showed significant differences between upward
and downward directions for the shoulder (in both cases,
P � 0.001) but not for the elbow and wrist (P � 0.5). In
addition, PA of the shoulder was greater than PA of the elbow
and wrist in upward direction (in all cases, P � 0.01), whereas
no differences between joints were found in downward direc-
tion (in all cases, P � 0.5).

tPA (Fig. 3A). ANOVA showed a significant interaction
effect between joint and direction for tPA (F2,18 � 7.26, P �
0.004). Post hoc comparisons showed differences between
upward and downward directions for shoulder (P � 0.01) and
elbow (P � 0.02) joints but not for the wrist (P � 0.8). In
addition, tPA of the shoulder was shorter than tPA of elbow
and wrist in the upward (P � 0.05) but not in the downward
(P � 0.05) direction.

tPV (Fig. 3B). There was also a significant interaction effect
between joint and direction for tPV (F2,18 � 11.54, P � 0.001).
Post hoc tests revealed differences between upward and down-
ward directions for shoulder (P � 0.01) and elbow (P � 0.02)
joints but not for the wrist (P � 0.8). In addition, tPV for the
shoulder was shorter than tPV of the elbow and wrist in the

upward (P � 0.05) but not in the downward (P � 0.05)
direction.

tPD (Fig. 3C). Finally, a significant interaction effect be-
tween joint and direction was also observed for tPD (F2,18 �
4.43, P � 0.02). Post hoc tests showed differences between
upward and downward directions for shoulder (P � 0.01) but
not for elbow and wrist (P � 0.5). In addition, tPD for the
shoulder was larger than those of the other joints in the
downward (P � 0.05) but not in the upward (P � 0.05)
direction.

These results clearly indicate that kinematic features of
upward vs. downward movements are highly dependent on the
joint involved in the motion: directional asymmetries attenuate
following a proximodistal gradient. This finding can be further
observed in Table 1, in which we show average values (�SD)
of the ratio of directional asymmetry for all of the above
kinematic parameters.

Normalized kinematics. Normalizations confirmed that par-
ticipants did not use a similar kinematic pattern to perform
movements with different joints in the vertical plane. Indeed,
normalized parameters showed that rtPA, rtPV, and rtPD
varied according to joint and direction (Table 1 and Fig. 4).
ANOVA revealed a significant interaction effect between joint
and direction for rtPA (F2,18 � 9.25, P � 0.002), rtPV
(F2,18 � 11.91, P � 0.001), and rtPD (F2,18 � 4.43, P � 0.03).
Post hoc comparisons for rtPA showed differences between
upward and downward directions for shoulder (P � 0.01) and
elbow (P � 0.02) joints but not for the wrist (P � 0.8). In
addition, shoulder rtPA was shorter than rtPA of elbow and
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Table 1. Average ratio (means � SD) of directional asymmetry for the main experiment (1st 3 rows) and control experiment A (last row)

Ratio of Directional Asymmetry

Main Experiment
Control

Experiment

Shoulder Elbow Wrist Shoulder

PA �23.84 � 4.98 �7.23 � 3.97 �2.15 � 5.14 �19.17 � 1.58
PV �16.62 � 3.07 �10.43 � 2.14 �2.23 � 3.80 �8.38 � 3.78
PD 3.92 � 3.93 4.43 � 2.58 3.65 � 7.56 0.65 � 3.16
tPA 18.00 � 2.73 11.22 � 2.61 1.31 � 3.58 22.12 � 8.14
tPV 14.16 � 2.19 6.24 � 2.05 1.07 � 2.03 9.61 � 3.59
tPD 9.17 � 1.98 5.15 � 2.29 �1.36 � 3.20 4.17 � 2.89
rtPA 16.11 � 2.47 8.68 � 1.63 1.77 � 2.22 23.40 � 9.70
rtPV 8.69 � 1.36 4.12 � 0.94 1.35 � 0.57 10.57 � 3.92
rtPD 7.05 � 1.28 2.38 � 1.36 �1.03 � 2.45 4.84 � 3.46

rtPA, relative time to peak acceleration; rtPV, relative time to peak velocity; rtPD, relative time to peak deceleration.
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wrist in the upward (P � 0.05) but not in the downward (P �
0.05) direction. Post hoc tests for rtPV revealed differences
between upward and downward directions for shoulder (P �
0.01) and elbow (P � 0.02) joints but not for the wrist (P �
0.8). In addition, shoulder rtPV was shorter than rtPA of the
elbow and wrist in the upward (P � 0.05) but not in the
downward (P � 0.05) direction. Finally, post hoc tests for rtPD
showed differences between upward and downward directions
for shoulder (P � 0.01) but not for elbow and wrist (P � 0.5).
In addition, shoulder rtPD was larger than those of the other
joints in the downward (P � 0.05) but not in the upward (P �
0.05) direction. These results indicate that normalized kine-
matic patterns also follow a proximodistal gradient with strong
direction-dependent variations (Table 1). Qualitatively, these
findings are illustrated in Fig. 5, in which normalized velocity
profiles from all trials of a participant (top row) and normalized
velocity profiles from all participants (bottom row) are de-
picted. It can be observed that velocity profiles of upward and
downward trials are well-segregated at the shoulder, slightly
overlap at the elbow, and are completely intermixed at the

wrist joint. Velocity profiles on the bottom row attest that this
observation was valid for all subjects.

Optimal Simulations

Figure 6 qualitatively illustrates the velocity profiles pre-
dicted by each optimal criterion. It clearly appears that the
minimum absolute work-jerk model is the only one that
matches the upward vs. downward kinematic asymmetries as
well as their progressive attenuation according to a proxim-
odistal gradient. Table 2 shows the rtPV values predicted by
the different models and those recorded experimentally. Min-
imum variance, minimum torque change, and minimum jerk
models predict symmetric velocity profiles (rtPV � 0.50–
0.51) whatever the direction or the joint involved in the motion.
Average MSE values between experimental and theoretical
velocity profiles are shown in Table 3. It is noticeable for all
conditions that MSE of the minimum absolute work-jerk model
is smaller than MSE of all of the other models, reinforcing so
the adequacy of this model to predict experimental findings.
Statistical comparisons revealed that MSE of the minimum
absolute work-jerk model were significantly smaller than MSE
predicted by the other models (in all cases, P � 0.04 and t �
2.4) except for downward shoulder rotations predicted by the
minimum variance model (P � 0.2 and t � 1.39). We also
computed the ratio of directional asymmetry for each param-
eter (tPA, PA, tPV, PV, and tPD) and compared it (2-tailed
paired t-tests) between simulated and experimental data. We
did not find any differences between experimental ratios and
ratios predicted by the minimum absolute work-jerk model (in
all cases, P � 0.07 and t � 2.1). For the 3 other models,
statistical differences (in all cases, P � 0.01 and t � 3) were
found for tPA (shoulder and elbow), PA (shoulder), tPV
(shoulder and elbow), PV (shoulder and elbow), and tPD
(shoulder).

Control Experiments

A: shoulder rotations with elbow and wrist joints frozen. The
three subjects performed point-to-point movements with sin-
gle-peaked velocity profiles and comparable MD (average �
0.40 � 0.02 s) and amplitudes (average � 36.1 � 0.9°). It can
be observed in Table 1 (last column) that directional asymme-
try during shoulder motion is still present when the elbow and
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Fig. 4. Normalized temporal parameters. Average values are depicted for
upward (U) and downward (D) movements and reveal the temporal strategy of
movements performed with the shoulder, elbow, and wrist. rtPA, relative time
to peak acceleration; rtPV, relative time to peak velocity; rtPD, relative time to
peak deceleration.
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Fig. 5. Normalized experimental velocity pro-
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locity profiles are shown on the bottom row.
Arrows indicate movement direction.
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wrist joints are frozen, i.e., when shoulder rotations were not
anymore subject to interaction torques. Specifically, we can
observe negative ratios for PA and PV and positive ratios for
rtPA, rtPV, and rtPD. Note that, like in the main experiment,
PD is not asymmetric. Qualitatively, the similarity of the ratio

values with those obtained in the main experiment can be
appreciated by comparing the first and last columns in Table 1.

B: elbow rotations with an additional load. All participants
performed point-to-point forearm movements with single-
peaked velocity profiles (Fig. 7A). In addition, MD and move-
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Fig. 6. Normalized theoretical velocity profiles.
Average-normalized velocity profiles predicted
by the minimum absolute work-jerk (1st row),
minimum variance (2nd row), minimum torque
change (3rd row), and minimum jerk (last row)
are presented for the shoulder, elbow, and wrist.
Arrows indicate movement direction.

Table 2. Average values of the rtPV

rtPV

Shoulder Elbow Wrist

Up Down Up Down Up Down

Experimental 0.45 0.50 0.47 0.49 0.48 0.48
Minimum absolute work-jerk 0.45 0.50 0.47 0.49 0.49 0.49
Minimum variance 0.51 0.51 0.51 0.51 0.50 0.50
Minimum torque change 0.50 0.50 0.50 0.50 0.50 0.50
Minimum jerk 0.50 0.50 0.50 0.50 0.50 0.50

rtPV values were recorded experimentally, and those predicted by the 4 models are listed for comparison.
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ment amplitudes were comparable with those of the main
experiment: the average time was 0.37 � 0.05 s (SD), and the
average amplitude was 35.2 � 1.10°. The additional mass
significantly modified elbow kinematics. Precisely, the rtPV
changed from the no-load to the load condition (Fig. 7A),
mainly for the upward movements, and therefore the ratio of
directional asymmetry increased with the added load (load:
5.7 � 0.8% and no load: 3.3 � 0.5%; z � 2 and P � 0.003).
The minimum absolute work-jerk model closely matches the
increase of the ratio of directional asymmetry for elbow
movements in the load condition (load: 5.4 � 0.2% and no
load: 3.1 � 0.3%; z � 2 and P � 0.003; Fig. 7B).

C: accounting for interaction torques with a multijoint
model. Results from these additional simulations are presented
in Fig. 8. First, it can be observed that frozen joints could be
appropriately stabilized (3rd row in Fig. 8). Second, compen-
sating for interaction torques did not impair the capacity of the
model to reproduce the experimentally observed proximodistal
gradient on directional up/down asymmetries. Indeed, as pre-
dicted by the simplified biomechanical model (1st and 2nd row
in Fig. 8), the optimal strategy was still to produce asymmetric
velocity profiles when moving the shoulder joint, an asymme-
try that decreases for the elbow joint and disappears at the wrist
(4th row in Fig. 8), independently of the postural control
required for stabilizing the other limb. This is a proof of

concept that, at least for the absolute work-jerk cost, the results
would be unchanged if we used multijoint modeling.

DISCUSSION

In the present study, we examined kinematic patterns of
upward and downward single-joint movements (shoulder, el-
bow, and wrist rotations) and found both joint-dependent and
direction-dependent variations in several kinematic parame-
ters. Furthermore, numerical simulations revealed that our
experimental findings could be attributed to an optimal motor-
planning process that integrates the mechanical effects of
gravity force (gravity torque direction and amplitude) and
minimizes a compromise between the absolute work of forces
and the jerk. These findings suggest that the brain implements
optimal solutions according to the dynamic context of the
movement.

Kinematic Patterns of Vertical Arm Movements Vary
According to a Proximodistal Gradient

Previous studies have shown that kinematic patterns in the
sagittal plane vary with movement direction (Atkeson and
Hollerbach 1985; Berret et al. 2008a; Manckoundia et al. 2006;
Papaxanthis et al. 1998c, 2003a,b). Here, we also found dis-
similar kinematic patterns between upward and downward
movements involving the proximal shoulder joint. Precisely,
upward movements, compared with downward movements,
presented greater PA and PV as well as shorter tPA, tPV, and
tPD. These results expand those of previous studies on mono-
articular upper-limb movements (Crevecoeur et al. 2009;
Gaveau and Papaxanthis 2011; Gentili et al. 2007; Le Seac’h
and McIntyre 2007; Sciutti et al. 2012) and confirm that
direction with respect to gravity is an important parameter in
the planning of vertical arm movements. Interestingly, we also
found that many kinematic parameters varied according to a
proximodistal gradient. Most notably, kinematic asymmetries,
observed at the proximal shoulder joint, were reduced at the
intermediate elbow joint and statistically disappeared at the
distal wrist joint (Table 1). This novel finding suggests that
the brain generates motor plans in the vertical plane by taking
into account the direction and the magnitude of gravity torque
on each body segment. Three arguments support this premise.
First, joint-dependent and direction-dependent variations in
kinematic patterns were observed on normalized parameters
(Figs. 4 and 5), namely on parameters that should theoretically
remain similar if the subject’s intention was to generate equiv-
alent joint trajectories. Here, it is evident that subjects formu-
lated motor plans with dynamic criteria because a purely
kinematic plan would be implemented by similar kinematic

Table 3. Average values of mean square error calculated between simulated and experimental velocity profiles

MSE

Shoulder Elbow Wrist

Up Down Up Down Up Down Average

Minimum absolute work-jerk 0.13 1.80 1.11 0.65 0.66 0.56 0.82
Minimum variance 8.99 1.95 2.48 1.95 10.69 10.21 6.04
Minimum torque change 9.61 2.48 3.80 3.56 15.02 14.03 8.08
Minimum jerk 9.72 2.49 3.06 2.90 2.89 2.30 3.89

The last column shows average mean square error (MSE) for each model across all experimental conditions.
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patterns whatever the direction and/or the joint involved in the
motion. Second, in our study, the only dynamic parameter that
could influence joint motion was gravity torque, since interac-
tion torque was compensated and arm inertia (i.e., the distri-
bution of the arm mass around the joint) was constant (see also
control experiment A). Note that the alternative hypothesis,
postulating that joint-dependent and direction-dependent vari-
ations in kinematics were due to a misestimation, and not
optimization, of gravity effects can be rejected. In such a case,
we should have observed either constant movement errors that
would translate into significant difference between upward and
downward movement amplitude or feedback corrections dur-
ing the movement that would translate into velocity profiles
presenting multiple peaks. Last, we found that kinematic pat-
terns of upward and downward movements differed from the
beginning of the motion (PA arises before 100 ms; see Fig.
3A), observation that denotes a feedforward control process
that takes into account the dynamic context of the action
(Gaveau and Papaxanthis 2011).

Optimal Control of Vertical Arm Movements

Several investigations have suggested that the brain acquires
an internal model of gravity force for the successful interaction
of the body with the external environment (Angelaki et al.
2004; Crevecoeur et al. 2009; Gaveau et al. 2011; Papaxanthis
et al. 2005; Pozzo et al. 1998; White et al. 2005). The direction
of gravitational acceleration is certainly one of the main fea-
tures of this internal model. This information is very important
when catching falling objects or observing biological motions
(Indovina et al. 2005; Le Seac’h et al. 2010; McIntyre et al.
2001; Sciutti et al. 2012; Senot et al. 2005, 2012; Zago et al.
2011). Interestingly, our experimental and theoretical data addi-
tionally suggest that the brain internally represents the specific
mechanical effects of gravitational acceleration on each body
segment and plans optimal movements according to the specific
context of the action. The fact that kinematic patterns vary
according to the direction and the joint involved in the motion
argues in favor of an optimal dynamic motor planning.
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Theoretical simulations performed with the minimum abso-
lute work-jerk model confirmed the optimality of the experi-
mentally recorded kinematics. Although this cost is composed
of the absolute work of forces and the jerk, it is important to
note that the energetic cost alone (absolute work) predicts very
well the direction-dependent and joint-dependent variations in
kinematic patterns at 1 g. Interestingly, the energetic cost
predicts similar kinematic patterns in the absence of gravity
(0 g; Berret et al. 2008b), a finding that further reinforces the
idea that joint-dependent and direction-dependent asymmetries
are due to the optimization of gravity torque. The kinematic
(jerk) cost in the model accounts for the well-known smooth-
ness feature of human movements. Minimizing hybrid costs
allows one to improve theoretical predictions of various human
movements (Berret et al. 2011a,b; Gielen 2009; Mistry et al.
2013; Stein et al. 1988; Tagliabue et al. 2005). The idea of an
optimal integration of gravity torque is further supported by the
findings of control experiment B: increasing forearm mass, and
therefore gravity torque, changes elbow kinematics that resem-
ble shoulder kinematics (Fig. 7). This result is in line with
previous results (Hoffman and Strick 1993) that showed the
influence of varying loads on the patterns of muscle activity.
These authors observed that muscular patterns of radial devi-
ation were adapted to the force requirement of the task. By
changing the load applied to the wrist, the authors recorded
elbowlike, wristlike, and eyelike muscular activity patterns.
Here, we extended these observations on kinematic patterns by
showing that elbow movements can exhibit shoulderlike kine-
matic patterns. Accordingly, present results demonstrate that
the dynamic context of the task determines motion kinematics
in the vertical plane. In our study, we modeled each limb as a
rigid body, although in reality the CNS has to compensate for
inertial interaction torque at the nonfocal joint. One could ask
whether taking into account inertial interaction torque could
change the results of our model and consequently its ability to
match the present experimental findings. To this aim, we
carried out additional simulations where the arm was modeled
as a two-joint system (shoulder-elbow, elbow-shoulder, and
wrist-elbow) with one joint free to move and one joint re-
strained from motion (control experiment C). Findings from
these simulations revealed that compensating for inertial inter-
action torque does not change the optimal solution at the
moving joint presented in RESULTS.

Energy Minimization Accounts for Direction-Dependent and
Joint-Dependent Variations in Vertical Arm-Movement
Kinematics

In the present work, we also tested whether three well-
known optimal models, namely the minimum variance (Harris
and Wolpert 1998), the minimum torque change (Uno et al.
1989), and the minimum jerk (Flash and Hogan 1985), could
predict our experimental findings. These models, relevant for
predicting several kinematic features of movements in the
horizontal plane, failed to explain the specific direction-depen-
dent and joint-dependent variations in kinematic patterns ob-
served in this study. Note that this does not mean that their
predictions cannot match some of the kinematic features of
vertical motions. Indeed, all models almost match the joint
kinematic patterns for downward movements. The major ad-
vantage of the minimum absolute work-jerk model, in com-

parisons with the others models, concerns motion against
gravity.

The idea that the brain integrates the mechanical effects of
gravity force to minimize the energetic cost of the movement
is in line with previous studies that have acknowledged that the
brain takes into account musculoskeletal (Gottlieb 1996;
Gribble and Ostry 1999; Hirashima et al. 2007; Pigeon et al.
2003; Sainburg et al. 1999) and environmental (Ahmed et al.
2008; Conditt et al. 1997; Shadmehr and Mussa-Ivaldi 1994)
dynamics to plan and control arm movements appropriately.
Our experimental findings support the optimal control theory
(Izawa et al. 2008; Todorov 2004; Todorov and Jordan 2002;
Wolpert and Ghahramani 2000). We showed that an optimal
solution (minimum absolute work-jerk model) that integrates
gravity torques and minimizes the absolute work on each joint
predicts both joint-dependent and direction-dependent kine-
matic features when moving with or against gravity. Minimiz-
ing an energy-related cost had already been successfully em-
ployed to predict reaching kinematics in the vertical plane
(Berret et al. 2011b; Gaveau et al. 2011; Soechting et al. 1995).
In addition, by directly measuring the metabolic power, Huang
et al. (2012) have demonstrated that the CNS truly reoptimizes
arm movements by decreasing an energy-related cost when
learning to reach in a new dynamic environment. Although
energy appears to be an important criterion in movement
production, it has been shown that, depending on motion
context, motor planning can reflect the integration of various
objective functions related to kinematics and dynamics. For
example, within the framework of optimal feedback control,
Mistry et al. (2013) have recently suggested that including
kinematic constraints into the motor plan helps the brain
dealing with environmental uncertainty. It has been proposed
that moving along straight paths is an important kinematic
criterion during motor adaptation to a new environment (Kis-
temaker et al. 2010; Wolpert et al. 1995). In this way, exper-
imental findings that appear contradictory at first glance, such
as kinematic vs. dynamic motor planning, could be reunified
under the prism of optimal control theory.

Learning optimal control strategies is an important process
in motor control because we permanently interact with unstable
and changing environments. As an optimal behavior in one
context is no more optimal in a new one (Diedrichsen 2007;
Emken et al. 2007), motor adaptation must rapidly drive to new
optimal motor patterns (Crevecoeur et al. 2009; Gaveau et al.
2011; Izawa et al. 2008). Findings from microgravity experi-
ments support this idea. After sufficient exposure to weight-
lessness, subjects develop new motor strategies (Bringoux et
al. 2012; Papaxanthis et al. 1998a, 2005); as a consequence,
readaptation to normal-gravity conditions is necessary (Gaveau
et al. 2011). Sometimes, however, suboptimal behaviors are
observed. Indeed, two studies have reported results suggesting
that the gravity-force internal representation can lead to sub-
optimal control (Sciutti et al. 2012; Senot et al. 2005). Both
studies used a virtual reality system providing the subjects with
nonbiological feedback. In one study the visual feedback of the
pointing movements was rotated by 90° (Sciutti et al. 2012),
and in the other study the subjects observed free-falling objects
that did not respect the rules of physics (Senot et al. 2005). In
both cases, the behavior was strongly biased by the visual
feedback of the movement direction irrespectively of the real
dynamics being encountered (the real torques acting on the arm
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and the real acceleration of the ball to catch). These studies
confirm the importance of visual information for the integra-
tion of gravity force into motor planning. Although these
results could support the idea that only the direction of gravity
force is specified in movement planning, present results sug-
gest that, when no sensorial conflict is experienced, the mag-
nitude of the gravity torque is also specified into the motor
plan.

In synopsis, we found evidence that the CNS implements
optimal motor plans that integrate both the direction and the
magnitude of the gravity torque on each body segment. More
generally, the present results emphasize the importance of
dynamics, which override kinematics, when moving in the
vertical plane. The optimal interaction of the body with the
external environment may be crucial for adapted motor behav-
iors in several species. Hooper et al. (2009) have proposed that
a scaling rule, based on body (limb) size, may explain some
differences in the control strategies observed across species.
Large animals could devote more neural resources to the
control of movement than small animals since gravity and
inertial torques increase with body size. Small animals should
rely more predominantly on passive muscle properties since
the ratio of articulation stiffness to external torques dramati-
cally increases when animal size decreases (Hooper 2012).
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