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Executive Publishable Summary

This report describes the framework of the Bayesian-based decision support system
(DSS) for coastal multi hazards (RISC-KIT deliverable 3.3). By connecting hazard
intensities with socio-economic, environmental and cultural properties of different
receptor types, the DSS allows for the prediction of impacts resulting from coastal
multi-hazards for various hot spot areas.

A Bayesian network (BN), the modeling approach used, is a data driven model that
describes system relations in probabilistic terms. Generally, BNs are pre-fed with data
from which they “learn” relationships and can then be used to predict or diagnose
events. The graphical user interface is very similar to causal diagrams.

The DSS is based on data from hydrodynamic storm simulations, information on land
use and so-called vulnerability relationships. The approach can easily be applied to
any hot spot area. This report introduces the general framework and explains how the
system can be configured at individual sites. Moreover, a demo DSS is presented for
the Belgian town of Zeebrugge, which can predict spatially varying inundation depths
and damages to buildings for different storm scenarios. Furthermore, it can be used to
diagnose under which storm conditions and where on the site the highest damages
occur.
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1 Introduction

Recent and historic low-frequency, high-impact events such as Xynthia (impacting
France in 2010), the 2011 Liguria (Italy) Flash Floods and the 1953 North Sea storm
surge which inundated parts of the Netherlands, Belgium and the UK have
demonstrated the flood risks faced by exposed coastal areas in Europe. Typhoons in
Asia (such as Typhoon Haiyan in the Philippines in November 2013), hurricanes in the
Caribbean and Gulf of Mexico, and Superstorm Sandy, impacting the northeastern
U.S.A. in October 2012, have demonstrated how even larger flooding events pose a
significant risk and can devastate and immobilize large cities and countries.

These coastal zone risks are likely to increase in the future (IPPC, AR5) which requires
a re-evaluation of coastal disaster risk reduction (DRR) strategies and a new mix of
prevention (e.g. dike protection), mitigation (e.g. limiting construction in flood-prone
areas; eco-system based solutions) and preparedness (e.g. Early Warning Systems,
EWS) (PMP) measures. Even without a change in risk due to climate or socio-
economic changes, a re-evaluation is necessary in the light of a growing appreciation
of ecological and natural values, which drive ecosystem-based or Nature-based flood
defense approaches. In addition, as free space is becoming sparse, coastal DRR plans
need to be spatially efficient, allowing for multi-functionality.

1.1 Project objectives

In response to these challenges, the RISC-KIT project aims to deliver a set of open-
source and open-access methods, tools and management approaches to reduce risk
and increase resilience to low-frequency, high-impact hydro-meteorological events in
the coastal zone. These products will enhance forecasting, prediction and early
warning capabilities, improve the assessment of long-term coastal risk and optimise
the mix of PMP-measures. Specific objectives are:

1. Review and analysis of current-practice coastal risk management plans and
lessons-learned of historical large-scale events;

2. Collection of local socio-cultural-economic and physical data at case study sites
through end-user and stakeholder consultation to be stored in an impact-
oriented coastal risk database;

3. Development of a regional-scale coastal risk assessment framework (CRAF) to
assess present and future risk due to multi-hazards (Figure 1.1, top panel);

4. Development of an impact-oriented Early Warning and Decision Support
System (EWS/DSS) for hot spot areas consisting of: i) a free-ware system to
predict hazard intensities using coupled hydro-meteo and morphological
models and ii) a Bayesian-based Decision Support System which integrates
hazards and socio-economic, cultural and environmental consequences (Figure
1.1, centre panel);

5. Development of potential DRR measures and the design of ecosystem-based
and cost-effective, (non-)technological DRR plans in close cooperation with
end-users for a diverse set of case study sites on all European regional seas and
on one tropical coast (Figure 1.1; bottom panel);
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6. Application of CRAF and EWS/DSS tools at the case study sites to test the DRR
plans for a combination of scenarios of climate-related hazard and socio-
economic vulnerability change and demonstration of the operational mode;

7. Development of a web-based management guide for developing integrated
plans along Europe’s coasts and beyond and provide a synthesis of lessons
learned in RISC-KIT in the form of policy guidance and recommendations at the
national and EU level.

The tools are to be demonstrated on case study sites on a range of EU coasts in the
North- and Baltic Sea Region, Atlantic Ocean, Black Sea and Mediterranean Sea, and
one site in Bangladesh, see Figure 1.2. These sites constitute diverse geomorphic
settings, land wuse, forcing, hazard types and socio-economic, cultural and
environmental characteristics. All selected regions are most frequently affected by
storm surges and coastal erosion. A management guide of PMP measures and
management approaches will be developed. The toolkit will benefit forecasting and
civil protection agencies, coastal managers, local government, community members,
NGOs, the general public and scientists.

1.2 Project structure

The project is structured into seven Work Packages (WP) starting with WP1 on ‘Data
collection, review and historical analysis’.; WP2-4 will create the components of the
RISC-toolKIT containing an ‘Improved method for regional scale vulnerability and risk
assessment’ (WP2), ‘Enhanced early warning and scenario evaluation capabilities for
hot spots’ (WP3) as well as ‘New management and policy approaches to increase
coastal resilience’ (WP4). The toolkit will be tested through ‘Application at case study
sites’ (WP5). WP6 will be responsible for ‘Dissemination, knowledge transfer and
exploitation’ and ‘Coordination and Management’ are handled in WP7.
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Figure 1.1: Conceptual drawing of the CRAF (top panel), the EWS (middle panel) and
the DSS (bottom panel)
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Figure 1.2: Case study sites (stars), RISC-KIT case study site partners (blue solid dots)
and non-case study site partners (red open circles).

1.3 Deliverable context and objective
The Description of Work states the objective and context of this Deliverable as follows:

“The Bayesian decision support system (DSS) connects physical hazards to socio-
economic, environmental and cultural properties of the receptor types, and the effects
of the DRR plans. The DSS will allow for the prediction of impacts of coastal multi-
hazards for the case study sites, including uncertainty bands. In this task we will
design the structure (nodes and relations) of the Bayesian network using the freeware
Netica package and a supporting tool that generates impact data from hazard
intensities and receptor attributes using the vulnerability relations compiled under
WP2 (Task 2.2). This tool will be used in WP5, Task 5.3 to train the system for each
case study site

The deliverable of this task is a demo Bayesian DSS and supporting tool (D.3.3, this
deliverable [added]), including configuration manuals which will be made available
through the project website. We will organize a first training session (Milestone 9) for
the partners in WP5 to set-up the DSS for their case study sites. Once the scenarios are
run in WP5, Task 5.4, a second training session will be given on how to incorporate the

6
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scenario data in the Bayesian network and on how to visualize the results.”

This deliverable is a demonstration Bayesian DSS, based on the freeware Netica
(Norsys 2014) package and a supporting tool that generates impact data from hazard
intensities and receptor attributes using the vulnerability relations compiled under
WP2. The tool and configuration manual (contained in this document) will be made
available through the project website.

This deliverable addresses the objective of WP 3 and Project Objective 4 and the
guoted text from the “Description of Work” above, by providing the framework for the
DSS part of the EWS/DSS for hot spot areas.

1.4 Approach

The idea is that a Bayesian DSS can be built for an arbitrary site. In RISC-KIT all case
study site partners (CSPs) will set up an individual DSS for the local hot spot area of
their case study site (cf. Figure 1.2) to exemplify its general applicability (RISC-KIT
project Milestone 10 resulting from task 5.2: EWS/DSS systems set up for each case
study site).

While this deliverable report addresses the RISC-KIT CSPs, its guidelines can be
consulted by anyone to set up a DSS for any case study site.

1.5 Outline of the report

This report is structured as follows. Section 2 gives a more detailed account on the
objective of the task and describes the knowledge gaps it addresses. Section 3
introduces the framework of the DSS. It describes the general structure and types of
variables of the DSS and contains configuration instructions. Section 4 presents a
demo version of the tool for the hot spot Zeebrugge. Section 5 concludes the report.




i 'w' RISC-KIT D3.3 Bayesian Decision Support Tool

2 Research Gap and Objective of Task

Researchers across many disciplines are dedicated to developing methodologies that
identify risks and to helping decision makers design effective risk reduction plans. On
the one hand they apply numerical hydrodynamic process models to assess the
natural coastal response and the extent of flooding due to storms. In this project
among others XBeach, TELEMAC and LISFLOOD are used. On the other hand they use
vulnerability relations to estimate potential impacts for those receptors that are
exposed to coastal hazards, e.g. depth - damage curves. Many more examples can be
found in the Coastal Vulnerability Indicator (CVI) Library (Deliverable 2.2) that has
been developed within WP2 and addresses socio-economic, environmental and
cultural impacts (Viavattene et al. 2015).

Integrated assessment methods are still rare. Ideally, integrated models depict the
entire cause-effect chain from multiple coastal hazards to their diverse consequences
reflecting the complexity of the issue. They offer deeper insight in the design of short,
middle, or long-term DRR measures than single discipline models and help to avoid
unforeseen consequences of those measures (Rotmans et al. 1994). Recently, Jonkman
et al. (2008) proposed a GIS-based approach to describe a spatially varying flood
hazard and resulting estimates of direct physical damages to various objects, indirect
economic damage and the loss of life. The model presents the results of one typical
low probability-high impact flood scenario in the Netherlands with the help of maps.
Task 3.3 continues on the trend of integrating the separate modeling approaches into
a homogeneous framework. The purpose is to compile impact estimates of many
different storm scenarios in a Bayesian network (BN).

BNs are data based models that describe system relations in probabilistic terms. They
are pre-fed with data from which they “learn” relationships and then used to predict
or diagnose events. The graphical user interface is very similar to causal diagrams. An
example of such a model is given in Figure 2.1 (and also in Figure 4.4 in section 4.3
where it is described in detail).

Peak water level (Z)
B.35m  20.0 Houses - Location (A}
71m 20.0 p— Area 1 (has 283 houses) 167 m
74m 200 p— Area 2 (has 759 houses)  44.7 e
7.8m 20.0 p— Area 3 (has 383 houses)  22.6 pm
7.9m 20.0 p— Aread ihas 273 houses) 161 m

7.31 £ 0.56 238+094

T
\ Average house value ()

h 4

Max. significant wave height (H|
5.2m 200
57m 200
5.9m 200
6.08m 200
6.2m 20.0

5821035

Houses - Max. inundation depth (1) Houses - Relative damage (D) Houses - Absolute damage (D_Euro)
om 32.2 et 0% 32.2 0 32.2
0to 0.5m 44.5 010 23.5% 44.5 pm— 01o 24000€ 44.5
0.5t01m 203 m 23510 47% 203 m 24000 to 47000€ 203 m
110 2m 2.95 47 to 50% 2.95 47000 to 50000€ 2.95
0.308 + 0.36 13815 20400 + 51000

L

Figure 2.1: Demo Bayesian network

BNs have been applied a number of times as tools for decision-making under
uncertainty. Hendriksen et al. (2007) conclude that they are very valuable for
negotiations and discussions between managers, experts, stakeholders and
representatives of the general public, among others, because they are transparent and
flexible tools. In the context of floods, Garrote et al. (2007) combine BNs and
deterministic rain run-off models to forecast flooding, and Vogel et al. (2012, 2013)
use BNs to estimate damages resulting from river floods. In coastal environments they
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have been applied to predict erosion and shoreline retreat (Den Heijer 2013; Gutierrez
etal. 2011; Hapke & Plant 2010).

An advantage of BNs is their ability to handle various sources and types of data. The
BN framework developed for RISC-KIT combines information on the topography and
assets of the potentially affected area with simulation data of flood scenarios and
damage estimations from the CVI relations. More precisely, the framework relates
coastal storm impacts not only to erosion or flood extent, but also to near-shore storm
conditions, such as peak water level, maximum significant wave height or storm
duration. A second major benefit, and generally speaking the main use of BNs, is the
possibility to update predictions according to the latest available information. In the
RISC-KIT context, the site-specific BNs are fed with numerous storm scenario
computations, based on which it will give a general prediction of expected inundation
and impacts in the hotspot area. This prediction can be updated and tailored to an
approaching storm with the latest field observations or model predictions, without the
need for doing computationally expensive (near shore) simulations in real-time.

Because BNs are very light, they can be installed on stand-alone computers, laptops or
smart phones and still make consequence predictions for impending storms in real-
time. In contrast, the hydrodynamic process models, which are currently used to make
inundation predictions, are implemented on high performance computers due to
computational demand. Warnings and information on events thus need to be
distributed to decision makers in the field through ICT networks, which have high
vulnerability during extreme events. Also, because of the processing time for
computations, it is a challenge to include local observations and rapidly changing
information that becomes available towards the peak of an event. Therefore, BNs are
more suitable than hydrodynamic process models to provide urgent decision support,
possibly in the field. Moreover, the BN enables planners to test risk reduction
measures for robustness against a variety of storm scenarios, as long as these measure
have been included in the model set up.
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3 Framework

Each hot spot area (with those considered in RISC-KIT given in Figure 1.2) will have its
individual Bayesian DSS with a different choice of variables. However, all models have
the same structure and link coastal hazards to impacts. In general, five categories of
variables can be distinguished: (1) Hazard boundary conditions, (2) receptors, (3)
local hazards, (4) impacts, and (5) DRR measures, defined below. The yellow boxes in
Figure 3.1 indicate (groups of) variable categories.

Hazard
Boundary
Conditions Receptors
& Impacts
Hazards

DRR Measures

Figure 3.1: Structure of Bayesian DSS (compare with Figure 3.7 to see more detail)

3.1 The Variable Categories

This section explains the type of variables that belong to each box and provides
examples.

Hazard boundary conditions (BC)

This category contains hydraulic variables that characterize different storm scenarios.
Typically, they coincide with the maxima of the boundary conditions used in the
hydro- or morphodynamic models of the coastal FEWS-system. Choices can be e.g.
maximum significant wave height and period, peak water level (depicted in Figure 3.2)
predominant wave angle or storm duration.

Peak water level [m]
5t055 45.0
55t06 30.0
6to6.5 20.0
6.5t07 5.00

5.68 £ 0.48

Figure 3.2: Example of BC node

10
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Receptors (R)

In order to represent the spatial distribution of receptors the hot spot sites are
subdivided into several areas. The receptor variables indicate the receptors densities
in each area of the hot spot. Each receptor type is represented by one variable. The
CSPs decide which types are relevant for their site and which they wish to include in
the DSS. All receptor types for which vulnerability relationships are available in the
CVI library can be included. Examples are (different kinds of) buildings, ecosystems
and people. Figure 3.3 gives an example for the receptor type residential houses. Note
that 283 houses are 16.7% of the total number of houses.

Houses - Location
Area 1 (has 283 houses) 16.7
Area 2 (thas 7549 houses) 447
Area 3 (has 383 houses) 226
Area 4 thas 273 houses) 161

238 £0.94

Figure 3.3: Example of R node

Hazards (H)

For each receptor type the DSS contains those hazard variables that are needed to
determine impact with the vulnerability relationships. For instance, scour may be a
relevant variable for damage to buildings, but less so for loss of life. Other possible
choices of variables are e.g. maximum inundation depth, maximum flow velocity,
maximum flux or flood duration. Each variable indicates the proportions of receptors
that are (or the likelihood that an arbitrary receptor is) threatened by certain hazard
intensities, see Figure 3.4 for an example.

Houses - Max. inundation depth

Om 32.2
0to 0.5m 445
0.5t 1m 203
110 2m 2.95

0.308 £0.36

Figure 3.4: Example of H node

Impacts (C")

Similar to a hazard variable, an impact variable indicates the proportions of receptors
that experience (or the likelihood of an arbitrary receptor to be experiencing) certain
impact intensities. Single or multiple hazard variables can be translated into impacts
using the transfer functions of the CVI library. Figure 3.5 shows a node for relative
damage to residential houses derived from the maximum inundation depth node
shown in the previous figure.

! «C” stands for consequence, because “I” will be used to abbreviate inundation later on.

11
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Houses - Relative damage
0% 32.2
Oto23.5% 445
2346t 47% 203
47 1o 50% 2.95

13815

Figure 3.5: Example for C node

Disaster Risk Reduction Measures

If data is available on the effect of DRR measures they can be included in the DSS. Each
measure is represented by one variable, which has at least two states. The first state
represents the “do nothing” option, while each additional state represents
alternatives. For example the node in Figure 3.6 reflects the DRR measure “increase
dike height”. Here, the original dike height is 3m and the proposed DRR options are to
increase the dike by either 1m or 2m.

Dike height [m]

SIS 313
dm 333
Sl Rl

Figure 3.6: Example of DRR node

3.2 Set-up of System Relations

As mentioned above the implementations of the DSS will vary per location. The case
study site partners will determine a configuration that best suits their own hot spot
area. Figure 3.7 gives a more detailed account of the generic DSS structure than Figure
3.1. It demonstrates the principal of how the individual variables are linked to each
other. The variable names are generic and can be considered “place holders” that will
be substituted for real variables by the CSPs.

The configuration steps that need to be taken by the partners are outlined in the
following sections. A separate configuration manual is not needed (and will not be
provided), because the configuration process will be semi-automated and integrated
in Delft-FEWS (D3.1) by means of a model adapter for the BN.

The model adaptor makes use of the Netica APl so that the CSPs will not need to
interact with the Netica software directly to set up the system. In configuration step 1 -
3, they will provide the necessary information to define the model structure and
supply data on receptors and vulnerability relationships, while in configuration step 4
the model adaptor uses this information to set up the system and the data from storm
simulations are integrated in the network.

While Figure 3.7 depicts the structure of the generic system, which can be extended
for more boundary conditions, receptors, local hazards, impacts or DRR measures, the
demonstration DSS in Figure 4.4 can be regarded as “minimal working example”. The
latter is published on the project website (“http://www.risckit.eu/np4/8/”) together
with this deliverable report.

12
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G

id
E\

C3_R2

{ DRRZ )

Figure 3.7: lllustration of system relations of the DSS for two receptor types. BC1, BC2
and BC3 represent hazard boundary conditions; R1 and R2 represent receptor
densities; H1_R1, H2_R1 and H3 R1 represent hazards affecting receptor type 1; H1 R2
and H4 R2 represent hazards affecting receptor type 2; C1 R1 and C2_R1 represent
impacts on receptor type 1; C3_R2 represents an impact on receptor type 2; DDR1 and
DDR2 represent DRR measures.

3.2.1 Configuration Step 1

The first step deals with the hazard boundary conditions and the DRR plans which
affect the hydro- or morphodynamics (e.g. dikes or beach nourishments). The more
hazard boundary conditions are incorporated and the finer the discretization (e.g. the
example node in Figure 3.2 has four bins and a bin size of 0.5m.), the more storm
simulations are necessary. Moreover, each storm scenario needs to be simulated with
and without DRR measure in place. In other words, there is a trade-off between
simulation effort and detail of the DSS. To find the right configuration, all CSPs are
asked to answer the following questions:

1. How many hazard boundary conditions do you wish to include and which ones?

2. For each condition, what are the minimum value, the maximum value and the
desired bin size?

3. What is the joint probability distribution of the hazard boundary conditions (in
discretized format according to the specified bins)? If this information is not
available an assumption can be made, eg. like in the demonstration BN
described in section 4.2.1.

4. How many DRR options do you wish to implement (total of all DRR measures
including zero options)?

Based on the answers a minimum number of model runs are determined and hazard
boundary conditions for each run are proposed. This process is semi-automated and
ensures that a sufficient number of data points fall within each bin. If the number of
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model runs does not match the simulation capacity of the CSPs, they can reduce their
model complexity or try to expand their computational capacity.

The number of nodes, their names and bins define the BN model and are saved as part
of the so-called “ModelDataSetFiles” of Delft-FEWS by the CSPs. When the DSS is
started from Delft-FEWS, these files are used to set up the DSS in the software Netica.
This will be explained at the last configuration step.

3.2.2 Configuration Step 2

Configuration step 2 focuses on georeferencing the receptors in a specific way.
Foregoing is the subdivision of the hot spot into smaller areas. CSPs will decide on the
division themselves. It can be based on administrative districts or zones of similar
hazards. The latter is recommended and can rest on expert judgment or analysis of
flood patterns in multiple storms.

The following information is needed for each individual receptor:

1. What type of receptor is it?

2. To which area of the hot spot does it belong?

3. Which grid point(s) of the hydrodynamic model correspond(s) to its location?
(This can for example be done in a GIS software by comparing a shapefile
containing the locations of the receptor with the model grid.)

This information will be provided by the case study site partners in a format similar to
the one given in Table 3.1 and is saved as part of the ModelDataSetFiles.

Table 3.1: Example table for the DSS specific georeferencing of receptors (format may
be subject to change)

Receptor ID Receptor Type Grid point ID Area ID

1 Residential House [931, 932, 935] 4

3.2.3 Configuration Step 3

In this step the hazard and impact variables are defined. First, CSOs consult the CVI
library and identify which vulnerability relationships are applicable at the hot spot
level to the receptor types identified in step 2. The relationships define which impacts
can be computed for each receptor and which hazard variables are needed as input.
For instance, the maximum flux may be needed to compute risk of life. Second, CSOs
decide on the desired bin sizes for the impact variables, which typically dictate the bin
sizes for the hazard variables as well. Third, the CSOs write a table for each relevant
vulnerability relationship as exemplified in Table 3.2.

Again, the information on the choice of variables and bin sizes is stored as part of the
ModelDataSetFiles in Delft-FEWS.
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Table 3.2: Example format of CVI table for DSS. (This table corresponds to the DSS
shown in Figure 1.1)

Inundation depth [m] Relative damage to residential buildings [%]
0 0
0 0
05 235
1 47
2 50

3.2.4  Configuration Step 4

When the BN is started from Delft-FEWS, the ModelDataSetFiles are used to set up the
DSS in the software Netica. The BN model adapter reads the ModelDateSetFiles and
sets up the DSS up for each hot spot (RISC-KIT project Milestone 10 resulting from
task 5.2: EWS/DSS systems set up for each case study site). Thereafter, the Bayesian
network will be trained and used with data from storm simulations (RISC-KIT project
tasks 5.3 and 5.4).

In this context it is also important to adhere to a naming system for the netcdf output
files. The data in the netcdf together with its name and the ModelDataSetFiles need to
contain all information about the scenario that has been run and if a DRR measure has
been applied which one. The names should be as follows

YYYYMMDD_modelX_mAbinN_mBbinM.netcdf

where mA stands for measure A, mB stands for measure B and N and M are bin
numbers. At the same time a table is supplied to the ModelDataSetFiles, which
translates mA, mB, ... to their official variable name in binN, binM, ... to their official
bin names. modelX can be anything and is chosen by the CSPs. For example, the name
20150331_modelX_mAbinl_mBbin2.netcdf together with Table 3.3 indicates that the
model has been run with a 3m high dike and beach nourishment.

Table 3.3: Example of variables names

Variable code Variable name Bin code States State titles
mA Dike height binl 3 3m
bin2 4 4m
bin3 5 5m
mB Beach binl No No
nourishment bin2 Yes Yes
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4 Demonstration of the Bayesian DSS

This section describes the Bayesian DSS in its simplest form and functionality. The
demo DSS has been developed for the site of Zeebrugge, Belgium. This model has been
developed in (Jager et al. 2015), which contains more technical details and can be
found in Appendix A.

4.1 Brief Introduction to the Zeebrugge Site

Zeebrugge is a residential town and seaside resort on the North Sea Coast and location
of Belgium’s second largest harbor. The harbor consists of three parts. The outer and
inner ports are shown in

Figure 4.. The outer port is constructed on reclamation ground and is protected by two
breakwaters. It has direct access to the sea and sufficiently deep water for roll-on/roll-
off and container traffic. Also, LNG vessels moor here. The Pierre Vandamme lock
(East/ right in the figure) and the Visart lock (West/ left in figure) connect the tidal
outer port with the non-tidal inner port. The docks of the inner port accommodate
logistic centers for handling, storage and distribution of e.g. new cars, break bulk or
food products. The Baudouin canal (South/ bottom of the figure) leads to the seaport
of Bruges. The activities in this part of the port mainly involve bulk and conventional
cargoes.

The hot spot is the old town of Zeebrugge, which is mainly residential. It is located
between the inner and outer port and the two locks. A scheme can be seen in Figure
4.1.
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Figure 4.2: Port and old town of Zeebrugge (© Luchtfotografie Henderyckz)

4.2 Input Data

This section describes the data that has been used to train the Bayesian network for
each of the variable categories. A DRR measure is not yet included in the demo
version.

4.2.1 Hazard Boundary Conditions

The demo DSS uses a simple synthetic storm climate that consists of 25 realistic storm
scenarios. They are combinations of five water level time series with different peak
water levels, z, varying between 6.35m and 7.9m and five wave time series with
different maximum significant wave heights, h, varying between 5.2m and 6.2m (see
Table 4.1). This choice covers a range of storms with return periods from about 100
years to more than 10000 years. For each combination a 46 hours storm has been
simulated, which corresponds to three high tides. For simplicity, Z and H are assumed
to be independent and have discrete uniform probabilities of occurrence in 100 years,
i.e. 20%, where the time frame is chosen arbitrarily. Hence, each storm scenario
occurs within the next 100 years with a probability of 4%.

Table 4.1: Wave heights and water levels for the test matrix

Water level [m TAW] 635 |71 74 |78 |79
Wave height [m]
520
570
5.90
6.08
6.20
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4.2.2 Receptors

The demo DSS is limited to residential houses as receptors. Because the depth-damage
curve to be used in the impact estimation (see section 4.2.4) does not distinguish
between different kinds of houses, all residential houses are modeled as the same
receptor type.

Of relevance to the DSS are the spatial distributions of residential houses, which is
captured by dividing the hot spot area into four areas (Figure 4.2) and by counting the
number of houses for each area (Table 4.2). This information stems from the cadastral
map that has been collected in WP1.

Table 4.2: Number of houses per area

Area 1 2 3 4 Total
#Houses | 283 | 759 |[383 |273 | 1698

423 Hazards

Maximum inundation depth patterns are obtained through numeric simulation of
storm scenarios. The simulations focus on overtopping North of the old time, close to
the Vandamme lock, and do not take into account flooding from the basin in the West.
Because NNW is the most critical wave direction for this effect, it is used in all
scenarios. The overtopping discharge time series is input for a TELEMAC 2D model,
which calculates the dynamic behavior of the flooding on land and from which the
maximum inundation for each grid point can be inferred. An example of an inundation
map is given in Figure 4.1.

= Legend
- Inundation depth [m

< 03-16
O Case study site

0 250 500 mi
[ ——— :

o slos i @b[;enStreetMap contributors
Figure 4.1: Example of a maximum inundation depth map of Zeebrugge

The individual locations of residential houses are known from the data collection in
task 1.2 and can be matched to the model grid points. For the Zeebrugge case, this has
been done by comparing a shape file with the gridded output of the hydrodynamic
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model. For every storm scenario, each house is associated with a maximum inundation
depth. For houses that are located in between grid points the inundation depths are
interpolated. The maximum inundation depths never exceeded 2m for any house.

4.2.4 Impacts

The relative damage per house (in terms of the maximum possible damage), is
calculated with the depth damage curve for residential houses in Flanders, Belgium, by
(Vanneuville 2003). This curve is also part of the CVI library (Viavattene et al. 2015). It
is depicted in Figure 4.3 and provides a functional relationship between maximum
inundation depth and relative damage. If an average house value is known, an
indication can be given for the absolute damage per house. For this demo DSS, an
average house value of 100,000€ is assumed. Because the maximum inundation
depths never exceeded 2m, the maximum attainable relative and absolute damage in
this demo case are 50% and 50,000€, respectively.

o 1 2 3 4 5 &
Inundation depth [m]

Figure 4.3: Depth-damage curve for Flanders, Belgium
4.3 Examples of Use

Before turning to specific examples of use, it is important to understand that the
reliability of the Bayesian DSS results leans on the quality of the underlying data and
models. Note especially that while the demo DSS is based on the hot spot Zeebrugge, it
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makes a strong simplifying assumption about the storm scenarios and does not reflect
real storm climate at the site.

431 The Basic State of the DSS

Figure 4.4 shows the Bayesian DSS in its basic state giving a default prediction. It has
seven probabilistic nodes, Peak water level (Z), Max. significant wave height (H), Area
(B), Maximum inundation depth (1), Number of Houses (N), Relative damage (D) and
Absolute damage (D_Euro), and one constant node, Average house value (v). Each
probabilistic node shows the states that the variable can be in, the probabilities of
being in these states as well as the mean and standard deviation, while the value of the
constant node is fixed. The nodes are connected with arrows, which indicate a
probabilistic influence on the node at the arrowhead from the node at the other end.
Most of the time these influences can be regarded as cause and effect relationships.

Z and H characterize a storm event. Based on our assumption (cf. section 4.2.1), a
future storm has any of the five peak water levels with a probability of 20% and
independently thereof any of the five maximum significant wave heights with a
probability of 20%.

B and N summarize the case study site. B indicates that if we randomly select a house,
just like drawing a ball from an urn, the probability of selecting a house that is within
area 1 is 16.7%, because this percentage of houses are located there. To be precise 283
houses out of a total of 1698 are situated in area 1 according to N. Similarly 44.7%
(759) are in area 2, 22.6% (383) are in area 3, and 16.1% (273) are in area 4.
Naturally, B and N are linked, as expressed by the arrow. But even more N is
completely determined by B, in other words their relationship is deterministic, which
is indicated by the slightly darker shade of this node.

| is an indicator for the hazard intensity at the hot spot. It is influenced by Z and H,
because greater storm magnitudes are more likely to cause flooding and by B, because
the different areas in the hot spot are not equally prone to flooding. The incoming
arrows indicate this. In the base state of the DSS node | represents, intuitively
speaking, the average proportion of houses that are inundated up to a certain level2:
32.3% of the houses are expected to never experience inundation, 44.5% of the houses
are up to 0.5m inundated, 20.3% of the houses are up to 1m inundated, and 2.95% of
the houses are up to 2m inundated. This is equivalent to saying that an arbitrary house
in the hot spot area has a chance of never being inundated of 32.3% and so on.

D and D _Euro are translations of inundation depths to relative damage estimates
based on the damage curve and absolute damage estimates using an average house
value of 100,000€3, respectively. The relationship is deterministic and, hence, the
nodes are darker. By modifying node v the average value can easily be changed.

°If we consider, for example, two equally likely storm scenarios, the first one causing 1% of
the houses to inundate at least 2m and the second one 5%, then the average proportion
would be 0.5*1% + 0.5*5% = 3%.

® Note that Netica uses the dot both as decimal and thousands separator which can be
confusing.
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Peak water level (Z)
5.35m  20.0 Houses - Location (A)
71m 20.0 p— Area 1 (has 283 houses) 16.7 m
7.4m 20.0 p— Area 2 (has 759 houses) 447 m—
7.8m 20.0 p— Area 3 (has 383 houses) 226 pm
7.9m 20.0 p— Area 4 (has 273 houses) 161 m

7.31 £+ 0.56 - 238+094

\ l Average house value ()

Houses - Max. inundation depth (1) Houses - Relative damage (D) Houses - Absolute damage (D_Euro)
om 32.2 0% 32.2 0€ 32.2
Oto0.5m 44.5 p— 010 23.5% 44.5 m—— 0to 24000€ 44.5 m——
05t01m 203 mm Tl 235t047% 203 " 24000to 47000€ 203 mm
1102m 285 47 to 50% 295 47000 to 50000€ 295
0.308 +0.36 DI85 20400 £ 51000

Max. significant wave height (H
5.2m 20.0
57m 20.0
5.9m 20.0
6.08m 20.0
6.2m 20.0
582:035

I
'

Figure 4.4: Expected storm impacts in the hot spot area

4.3.2 Predicting Impacts

Making impact predictions in real time is relevant during the event phase (from
several days before the storm until it has passed) as well as the planning phase. Some
examples for the event phase are given below, but the use of the DSS is not limited to
them. In the planning phase this mode can for instance be used to explore and discuss
the impacts of different storm scenarios and DRR measures during round table
discussions.

A few days ahead the magnitude of a storm, which is estimated with large-scale
meteorological models, can be somewhat uncertain. For instance, high water levels
reaching at least 7.8m are expected, but estimates on wave heights are not available.
In this case the DSS can be “conditioned” or “updated” on what is known, which is
shown in Figure 4.5. Because the demo storm climate contains only two peak water
level scenarios greater or equal to 7.8m, the user has set the distribution of Z to a 50%
chance for Z=7.8m and Z=7.9m each. This choice means that he/she is entirely
uncertain as to if one or the other will occur. As no additional information is available
for wave heights, node H maintains his prior distribution. Updating on one node
changes the probability distributions of all nodes that are influenced by it. Here,
updating H changes I, D, and D _Euro. Compared to the default prediction, the
probabilities for higher inundation depths and damages have increased.

Peak water level (Z)
B.35m [i] Houses - Location (A)
Tim 1] Area 1 (has 283 houses) 16.7 m
7.4m o Area 2 (has 759 houses) 44.7 —
7.8m 50.0 Area 3 (has 383 houses)  22.6 mm
7.9m 50.0 Area 4 (has 273 houses) 161 m
7.85+005 238094
\ l Average house value (v)
Max. significant wave height (H) Houses - Max. inundation depth (I) Houses - Relative damage (D) Houses - Absolute damage (D_Euro)
57m 200 fm Om 202fm 0% 02m 0e 202m
Oto 0.5m 33.4 0to23.5% 33.4 pu 0to 24000€ 33.4
g gg”m ggg : 0.5t01m 39.3 p— 2351047% 39.3 p—— 24000 to 47000€ 39.3 p——
6.2m 20.0 - 110 2m 7.07 47 to 50% 7.07 47000 to 50000€ 7.07
5.82+0.35 04844043 21217 37100 + 75000

Figure 4.5: Predicting impacts in the hot spot area of a storm with Z>7.8m and
uncertain wave height

If, towards the peak of the storm event, the user gains more accurate knowledge on
the hazard boundary conditions, he/she can update the corresponding nodes to
reduce the uncertainties. Figure 4.6 exemplifies this for Z=7.8m and H=5.9m, where
the peak water level and maximum wave height are more constrained. The BN reacts
to this decreased uncertainty in the hazard boundary conditions by shifting the
distribution of node I to lower values. On the contrary, the distribution is shifted to
higher values, when conditioning on Z = 7.9m instead of Z=7.8m (not illustrated in this
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report). The expected impacts are less severe than in the previous, more uncertain
scenario.

Peak water level (Z)

Houses - Location (A)

B.35m of ¢

71m 0 Area 1 (has 283 houses) 167 m

7.4m 0 Area 2 (has 759 houses) 447 p——

7.8m 100 Area 3 (has 383 houses) 226 pm

7.9m o Area 4 (has 273 houses) 161 m

78 238+ 004
l Average house value (v)
Houses - Max. inundation depth (1) Houses - Relative damage (D) Houses - Absolute damage (D_Euro)
Oom 21.4 mm 0% 21.4 mm 0€ 21.4 mm
Oto0.5m 42,8 —— ol 01023.5% 42.5 p—— 0to 24000€ 42.5 p——
05t01m 32.4 T 23510 47% 32.4 24000 to 47000€ 32.4
1to02m 341 4710 50% 34 47000 to 50000€ 341
0.401 £0.38 181 £16 25800 + 54000

Figure 4.6: Predicting impacts in the hot spot area of a storm with Z=7.8m and H=5.9m

By conditioning on an area, i.e. node A, the user can obtain more specific information
on the individual areas within the hotspot. In Figure 4.7 the demo DSS is conditioned
on the same storm as before and on area 1. It demonstrates that houses in area 1 are
especially at risk. For instance, 20.5% of the houses in this area are expected to be
inundated up to 2m, whereas the proportion of all houses in the hot spot area is only
3.41%.

Peak water level (Z)

Houses - Location (A)

6.35m 1}

7.1m 0 Area 1 (has 283 houses) 100
7.4m 1] Area 2 (has 759 houses) 1}
7.8m 100 Area 3 (has 383 houses) 1}

7.8m o[ 1
78

Area 4 (has 273 houses) 0
1

\ Average house value {v)
Max. significant wave height (H) Houses - Max. inundation depth (1) Houses - Relative damage (D) Houses - Absolute damage (D_Euro)
e 0 0% 0 [ 0
5’9m 4.24 O0to 23.5% 4.24 0to 24000€ 4.24
E’DBm T5.3 p—— 23510 47% T5.3 p—— 24000 to 47000€ 75.3 p——
E’Zm 205 pm 47 to 50% 20.5 pm 47000 to 50000€ 205 pm
- 0.883£0.38 787 83000 + 110000

Figure 4.7: Predicting impacts of a storm with Z=7.8m and H=5.9m specifically for area
1

4.3.3 Diagnosing Storms

Especially in the planning phase, it can be useful to diagnose the conditions under
which impact occurs or does not occur. The DSS in Figure 4.8 is conditioned on the
topmost absolute damage, which coincides with the highest states of the relative
damage and maximum inundation depth variables, to understand where in the hot
spot area and at which storm magnitudes it occurs. A house is most likely to suffer this
high damage if it is located in area 1 and the more severe the storm scenario is,
foremost the peak water level. The almost uniform distribution of the wave height
suggests that this hazard boundary condition is not important for this case. Moreover,
houses in area 4 will never incur maximum damage under any storm and no house at
all will incur maximum damage, if the peak water level does not exceed 6.35m.
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Peak water level (Z)
B.35m i] Houses - Location (A)
7am 048 Area 1 (has 283 houses)  86.0
74m 367 Area 2 (has 758 houses) 136Mm
7.8m 24.1 Area 3 (has 383 houses)  0.48
7.9m Talas Area 4 (has 273 houses) 1]
7852011 Al (2
l Average house value {v)
Max. signiicant wave height ) Houses - Max. inundation depth (1) Houses - Relative damage (D) Houses - Absolute damage (D_Euro)
S2m 123 9 9 % 0 1 0
57m 17.6 j— m
5.9m 20.2 I 0to 0.5m 0 Oto 23.5% 1) 0to 24000€ 1)
£.08m 236 p— 05t01m 1} 2351047% 1) 24000 to 47000€ 1)
B.2m 76,7 p— 110 2m 100 47 t0 50% 100 47000 to 50000 100
59+0.31 15029 48.5+ 0.87 273000 + 130000

Figure 4.8: Diagnosing which storm scenarios can cause maximum damage
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5 Conclusion

This report presented RISC-KIT deliverable 3.3, the Bayesian DSS, which can link
offshore storm conditions to hazards and impacts at selected hot spot areas. The main
advantage of such a system is threefold. First, the DSS can make impact predictions in
real time and it can thus support emergency managers in urgent decision-making. In
contrast a new simulation with a hydrodynamic process model would be
computationally expensive and time consuming. Second, the DSS enables planners to
test DRR measures for robustness against a variety of storm scenarios, as long as these
measures have been considered in the model set up. Third, the DSS can diagnose
under which storm conditions and where on the site the highest, medium or no
damages occur.

The framework of the DSS is generic and suitable for any case study site, also for sites
outside the RISC-KIT project. The underlying modeling approach is using a Bayesian
network (BN). These types of models describe the relationships between system
variables in terms of probabilities and have an interactive user interface which
resembles a casual diagram.

RISC-KIT's DSS links five categories of variables to each other:

1. Hazard boundary conditions, e.g. peak water levels during a storm;

2. Spatial distributions of different receptor types, e.g. of residential houses;

3. Spatial distributions of hazard intensities, e.g. maximum inundation depths at
the locations of residential houses;

4. Spatial distribution of impact intensities, e.g. relative damages to residential
houses; and

5. DRR measures, e.g. alternative height options for a new dike.

In order to set up the DSS, CSPs need:

e A discrete joint probability distribution of hazard boundary conditions at their
site;

e Detailed land use information of their site;

o Vulnerability relationships for the receptor types of interest, ie. transfer
functions from hazard to impacts such as depth-damage curves; and

o Sufficient computational capacity to simulate multiple storms and their
hydrodynamic and morphological effects on the hinterland.

As illustrated by the demo DSS, a fully functional system can be built for a single
receptor type with very few data on the storm climate. In general, one can make a start
with such a limited system for any case study site and extend the network as soon as
more data on hazard conditions, receptors or vulnerabilities becomes available.
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ABSTRACT: In this paper we develop a Bayesian network (BN) that relates offshore storm conditions to
their accompagnying flood characteristics and damages to residential buildings, following on the trend of
integrated flood impact modeling. It is based on data from hydrodynamic storm simulations, information
on land use and a depth-damage curve. The approach can easily be applied to any site. We have chosen
the Belgian village Zeebrugge as a case study. although we use a simplified storm climate. The BN
can predict spatially varying inundation depths and building damages for specific storm scenarios and

diagnose under which storm conditions and where on the site the highest impacts occur.

Coastal zones are very attractive to develop so-
cial, industrial and recreational infrastructure. They
have rich natural resources, impressive landscapes
and excellent navigation possibilities. In 2003 an
estimated 23% of the world population lived in low-
lying! coastal areas (Small and Nicholls, 2003).
The ongoing trend is a disproportionately rapid
expansion of economic activity, urban areas and
tourist resorts. At the same time coasts are affected
by various hydro-meteorological phenomena, such
as wind. waves, tides and precipitation which
can reach extraordinary magnitudes during storm
surges, hurricanes, typhoons or tsunamis. Result-
ing floods threaten people, cause land loss, damage
property, infrastructure and ecological habitats, and
destabilize economic activities.

While coastal zone managers cannot influence

By low-lying coastal areas we mean areas both within
100km of the shoreline and less than 100m above sea level.

the occurrence of extreme events, they can apply
measures to reduce the accompanying risks in the
short, middle and long term.

Researchers across many disciplines are dedi-
cated to developing methodologies that identify
risks and to helping decision makers design effec-
tive risk reduction plans. They apply numerical
hydrodynamic process models to assess the natu-
ral coastal response and the extent of flooding due
to storms, e.g. XBeach (Roelvink et al., 2009),
TELEMAC (Hervouet, 2000) or MIKE21 (Warren
and Bach, 1992), and use separate models to esti-
mate economic, political, social, cultural, environ-
mental and health-related impacts. Comprehensive
reviews have been written on assessment methods
for economic damage (Merz et al., 2010), on flood-
related health impacts (Ahern et al., 2005; Hajat
et al., 2005), and on estimation methods for loss
of life (Jonkman et al.. 2008b).
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Ongoing research is on the one hand directed to-
wards improving the various consequence models
and comparing them with each other (e.g. Schroter
et al., 2014). On the other hand there is a trend to-
wards integrating the separate modeling approaches
into a homogeneous framework. A GIS-based ap-
proach to describe a spatially varying flood hazard
and associated estimates of direct physical dam-
ages to various objects, indirect economic damage
and the loss of life has been proposed by (Jonkman
et al., 2008a).

‘We continue on the trend of model integration.
While Jonkman’s model presents the results of one
typical low probability-high impact flood scenario
with the help of maps, we attempt to compile im-
pact estimates of many different storm scenarios in
a discrete Bayesian network (BN). BNs are graphi-
cal models that describe system relations in prob-
abilistic terms. They can handle various sources
and types of data enabling us to combine informa-
tion on the topography and assets of the potentially
affected area with simulation data of flood scenar-
ios and damage estimations from single discipline
models.

More precisely, we relate flood impacts not only
to flood characteristics, but also to offshore storm
conditions, such as peak water level and maximum
significant wave height. This has two advantages.
First, the BN can make spatially varying conse-
quence predictions for an impending storm in real-
time and it can thus support emergency managers
in urgent decision making. In contrast a new sim-
ulation with a hydrodynamic process model would
be computationally expensive and time consuming.
Second, the BN can facilitate round table discus-
sions of e.g. planners. It enables them to instantly
compare the effect of risk reduction measures for a
variety of storm scenarios, as long as these measure
have been included in the model set up.

In this article we develop and describe a proto-
type of this BN and apply it to a case study site.
‘We use the implementation of the software Netica
(Norsys, 2014).

Our study site is the old town of Zeebrugge, lo-
cated on the North Sea coast of Belgium, which is
mainly residential. The storm scenarios, however,

Vancouver, Canada, July 12-15, 2015

are synthetic due to data limitations. While the net-
work structure can be applied to any site, the quan-
titative component is site specific. It implicitly con-
tains site topology or other unique features, such as
flood defenses, which determine if flooding occurs
and, if so, the spatial extent of the flooding.

As a first step, we focus on the prediction of
physical damage to residential buildings that have
been in direct contact with floodwater. We plan to
add other damages to the network later on in the
same manner.

1. BASIC CONCEPTS OF DISCRETE BAYESIAN
NETWORKS

BNs have been applied numerous times as tools
for decision-making under uncertainty. Henrik-
sen et al. (2007) conclude that they are very valu-
able for negotiations and discussions between man-
agers, experts, stakeholders and representatives of
the general public, among others, because they are
transparent and flexible models. Tn the context of
floods, Garrote et al. (2007) combine BNs and de-
terministic rain run-off models to forecast flooding,
and Vogel et al. (2012, 2013) use BNs to estimate
damages resulting from river floods. In coastal
environments they have been applied to predict
erosion and shoreline retreat (Den Heijer, 2013;
Gutierrez et al., 2011; Hapke and Plant, 2010). At
the moment of writing we are not aware of applica-
tions to coastal flooding.

Discrete BNs are probabilistic graphical mod-
els that represent a high-dimensional probability
distribution over a finite set of discrete variables
X|.X3,....X, (Pearl, 1988; Jensen, 1996). The core
of the representation is a directed acyclic graph
(DAG) whose nodes represent random variables
and whose arcs indicate a direct influence from
"parent node" to "child node". Because the graph
structure stipulates that each variable is condition-
ally independent of all predecessors given its par-
cnts, the joint distribution can be cconomically fac-
torized using the chain rule:

P(X1,Xa,... %) = [[P(Xi | Pa(X3)). (D)
i—1

where Pa(X;) denotes the set of parent nodes of X;
in the graph. Together, the DAG and a specification
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Average house value (v)

( Max_significant wave height (H) }———=(_Houses - Max. inundation depth ()

{Houses - Relative damage (D) )—-{Houses - Absolute damage (D_Euro) )

Figure 1: BN structure

of P(X; | Pa(X;)), for i = 1,..,n, or P(X;) in case
of no parents, uniquely specify a joint distribution
over X1 Xo, ooy Xy

A main use of BNs is updating: Once new evi-
dence on one or more variables is obtained, the ef-
fect can be propagated through the network using
Bayes’ theorem. Evidence can be propagated both
forward and backward, which enables predictive as
well as diagnostic reasoning.
2. DESIGN OF THE COASTAL STORM IMPACT
MODEL
This section motivates and describes the design of
the BN, i.e. the definition of random variables
and the structure as shown in Figure 1. The par-
ent nodes of the network characterize the hydro-
dynamic forcing, i.e. peak water level and maxi-
mum significant wave height, and the location of
buildings in terms of areas. They influence spa-
tially varying inundation depths, which in turn are
translated into relative and absolute building dam-
age with a simple depth-damage-curve and by as-
suming an average building value.

2.1.  Storm Scenarios

Extreme hydraulic conditions are commonly char-
acterized in terms of peak water level, maximum
significant wave height and period, predominant
wave angle, and storm duration. Naturally, data
on these hydraulic variables is rare. Since recently,
copulas are being used to represent their multivari-
ate distributions at offshore locations (e.g. De Waal
and van Gelder, 2005; Corbella and Stretch, 2013;
Li et al., 2014). However, the hydrodynamic pro-
cess model requires near-shore conditions as in-
put. The transformation of the joint distribution
of hydraulic variables from offshore to near-shore
is complex and has, to our knowledge, been rarely
described in the literature up to now (Bolle et al.,
2014; Leyssen et al., 2013). Also for our case study
site this information is not yet available. Therefore,

w

we assume a simplistic synthetic storm climate with
the intention to extend the model in the future.

This storm climate consists of 25 realistic storm
scenarios. They are combinations of five water
level time series with different peak water lev-
els, z, varying between 6.35m and 7.9m and five
wave time series with different maximum signif-
icant wave heights, h, varying between 5.2m and
6.2m. This choice covers a range of storms with
return periods from about 100 years to more than
10.000 years. For each combination a 46 hours
storm is simulated, which corresponds to three high
tides.

For simplicity we assume Z and H to be inde-
pendent random variables (see the two left nodes
in Figure 5) with discrete uniform probabilities of
occurrence in 100 years, i.e. 20%, where the time
frame is chosen arbitrarily. Hence, each storm cli-
mate scenario occurs within the next 100 years with
aprobability of 4%. This is a strong assumption and
does not reflect the storm climate at Zeebrugge re-
alistically. However, this assumption is unproblem-
atic for applications in real-time decision making,
because Z and H will be fixed to the (forecasted)
values of the impending or occurring storm.

2.2.  Residential Buildings on the Site

The case study site is divided into four areas, as il-
lustrated by Figure 2. The parcels correspond to ad-
ministrative districts, but other division criteria are
possible as well, e.g. based on topography. How
many residential houses lie within each area can
be extracted from a cadastral map and is listed in
Table 1. We introduce a node A to the network
to represent the location of an arbitrary residential
building. If we randomly select a house, just like
drawing a ball from an urn, the probability that it
is within area a is proportional to the number of
houses in a. This defines the probability distribu-
tion A. Note that it is independent of the storm sce-
nario.

29



t‘% 'RISC-KIT

D3.3 Bayesian Decision Support Tool

12th International Conference on Applications of Satistics and Probability in Civil Engineering, ICASP12

Figure 2: Residential buildings and areas at case study
site

Table 1: Number of residential buildings per area

Area| 1 2 3 4
Number of buildings | 283 759 383 273

2.3.  Maximum Inundation Depth and Damage

We obtain maximum inundation patterns through
numeric simulation of storm scenarios. The smu-
lations focus on overtopping North of the old town
and do not take into account flooding from the basin
inthe West. Because NNW isthe most critical wave
direction for this effect, it is used in all scenarios.
The overtopping discharge time series is input for
a TELEMAC 2D model, which caculates the dy-
namic behavior of the flooding on land and from
which the maximum inundation depth can be in-
ferred for each grip point, and by interpolation for
each house. An exampleisgiven in Figure 3.

We introduce a node maximum inundation depth
(of an arbitrary house under an arbitrary storm
scenario, more details in section 3), I, to the
BN which is Z, H and A's child, and discretize
its distribution into four intervals {iq,ip,iz,i4} =
{[0Om], (Om,0.5m], (0.5m, 1m], (1m, 2m]}. Then the
conditional probabilities can be specified as

P(l=ij|A=aZ=2zH=h)
_ r]ij,a\,z,h
Na

@

for j = 1...4, where ng is the number of houses in
areaaand nyj; 2 is the number of houses in area
a with maximum inundation depth ij under storm
scenario{z h}.

Vancouver, Canada, July 12-15, 2015
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Figure 3: Example of an Inundation map for Zeebrugge
and surroundings. The North Sea isto the North.
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Figure 4: Depth-damage curve for Flanders, Belgium

The relative damage per house (in terms of max-
imum possible damage), d, is calculated with the
depth-damage curve for residential houses in Flan-
ders, Belgium, by Vanneuville et al. (2006). This
curve is depicted in Figure 4 and provides a func-
tional relationship between | and D. Assuming an
average value per house, v, an indication can be
given for the absolute damage per house in &, dg.
Asan example, the BN here has v= 100000 & and
is represented as a constant node in the figures.?

3. INTERPRETATION OF THE COASTAL STORM
IMPACT MODEL

Theresulting BN is shown in Figure 5. At its heart

isnode . Thisnode can beinterpreted in two ways,

which are described in separate sections below. The

same applies to the two damage nodes, which are

merely translations from the maximum inundation

2Note that constant nodes do not have arcsin Netica
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Figure 5: BN with prior distributions

Peak water level (Z)
5.35m 0 Houses - Location (A)
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71 238094
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Figure 6: Updated BN for Z ="T.1m and H = 5.Tm

depth to units of impact and will therefore not be
discussed individually.

3.d.

One possibility, the conventional one, is to inter-
pret node / as the maximum inundation depth of
a single house. The prior probability distribution
of this node (Figure 5) represents the uncertainty
about the true maximum inundation value for an ar-
bitrary house whose location at the site is unknown
as well as the storm scenario by which they are af-
fected. We can reduce this uncertainty by condi-
tioning, for example, on Z =7.1m and H = 5.7m.
Now the distribution represents the uncertainty in
the inundation for a house at an unknown location
due to the storm with peak water level 7.1m and
maximum significant wave height 5.7m. This is
shown in Figure 6. By conditioning on A = 2 (Fig-
ure 7) we obtain the distribution for a house under
this storm that is located in area 2. It is important
to realize that the uncertainty does not stem from
the physical modeling. It arises, because the vari-
ous houses in area 2 experience different inundation

In General: (Conditional) Probabilities

depths. In that sense it reflects the unknown exact
location.

Alternatively, we can reason backward, e.g. by
conditioning on Dg = [47000€,50000€) (Figure
8) to understand the conditions due to which top-
most damage occurs. A house is most likely to suf-
fer maximum damage if it is located in area 1 and
the more severe the storm climate is, foremost the
peak water level. Moreover, no house in area 4 will
incur maximum damage and no house at all will in-
cur maximum damage, if peak water level is 6.35m.
3.2.  In the Special Case of Forward Reasoning:
(Conditional) Expectations

Unless we reason backward, we can interpret node
1 in an alternative manner. Besides representing one
random variable with four possible states, it repre-
sents four random variables associated with (condi-
tional) expectations.

Looking back at equation (2), we notice that the
right hand side is not just a conditional probabil-
ity. It is also simply the fractions of houses in area
a with maximum inundation depth i; under storm
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Figure 7: Updated BN for B=2,Z="T.1mand H=5.Tm
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Figure 8: Updated BN for Dg = [47000€, 50000€)

scenario {z,h}. If we define four new random vari-
ables, the fractions of houses that are inundated by
ij, Fj, j=1...4, then

ij,azh

(FlA=azZ=z,H=h} =" 3

ng
Figure 7 indicates that area 2 has 759 houses, of
which 18.7% are not flooded, 78.3% are inundated
up to 0.5m, and 3.03% are inundated between 0.5m
and 1m.

If we remove evidence for node A, as in Figure
6, Netica uses the law of total probability and com-
putes the distribution of / with its conditional prob-
ability table and the marginal distribution of A:

P(I=ij|Z=2,H=h) @

4
=Y PU=ij|A=a,Z=zH=h)-P(A=a).
a=1

This equals

4 N
Y 5 p(A=a) ®)
a=1 Na

and, using that (3) is a constant,

4
YE[Fj|A=aZ=zH=h]-P(A=a). (6)
a=1
This can be rewritten, using the law of total expec-
tation, as

E[Fj|Z=zH=h]. (7
Hence, each bin j in Node 7 also represents the con-
ditional expectation of the fraction of houses with
maximum inundation depth i; over all areas given
storm scenario {z,h}. Note that because P(A = a)
is proportional to the number of houses in area a,
this coincides with

{FJ ‘ Z=2z,H= h} = Rijz,hs 8®)

where n;; ;) is the total number of houses with
maximum inundation depth i; under storm scenario
{z,h}. This reasoning with conditional expecta-
tions can easily be extended to different condition-
ing sets. For example, for the network in Figure 5
we have

E[F]. ©
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Thus, the bins j = 1...4 of node [ in the BN with a map.
prior probabilities provide a summary of the distri- We can also interpret the BN results in the con-
bution of each F; in terms of the expected value. ventional way: /, D and Dg are the maximum inun-
We can explore F;’s distribution by conditioning dation depth, relative damage and absolute damage
on storm scenarios {z,/}: we find the values f; that for a single house. Then we can diagnose under
correspond to the probability P(Z = z,H = h) = which conditions the highest flood depth and dam-
P(Z =2z)-P(H = h). Admittedly, the usefulness age occur, which may help decision makers to de-
of this information depends on how realistically the sign risk reduction measures.
storm climate is quantified. In our case it is com- Finally, we would like to point out that the BN
pletely synthetic. Moreover, we can zoom in and can be built gradually and improved continuously,
out in space: we can obtain information per area or according to data availabilities and simulation ca-
for the entire case study site by conditioning node pacities. Naturally its prediction and diagnosis
A, or not. value depends on the quality of underlying mod-
els. Here it has to be noted that many consequence
models, including damage curves, are "simple ap-
In this article we proposed a BN approach to coastal proaches [..] to complex processes [...]" (Merz.

flood impact modeling. The BN links various off- etal., 2010) and are associated with large, and often
shore storm conditions to flood depths and building ;1 own. model uncertainties.

damages.

To understand the implications of a specific
storm scenario it seems very useful to interpret the
bins of nodes 7, D and Dg as the (conditional)
expectation of the fraction of houses that are in-
undated by i;, have relative damage d; or abso-
lute damage dg ., respectively. Conditioned on a

4. CONCLUSION

In the future, we aim to use a realistic joint proba-
bility distribution of hydraulic storm conditions, be-
ing represented by continuous nodes’ and possibly
including storm duration and wave period or angle
as additional variables. Then, the BN could give
an indication of the flood risk to residential build-
ings, as it links the damage extend to its probability
scenario the BN indicates corresponding spatially of occurrence. And again, we have the ambition
varying inundation depths and building damages. o extend the approach to a wider range of damage

Because we distinguish just four areas, the spa- categories. Another step could be to take model un-
tial detail is significantly less than the one of an in-  certainties into account, for both the damage model
undation or damage map: We can predicthow many a5 well as the hydraulic model.
houses within an area have a specific flood depth,
but we do not know which ones. Il desired, the res- ACKNOWLEDGMENTS
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the area in which a house is located. contract 603458, www.risckit.eu). Special thanks

Nevertheless this BN approach has a couple of go to Ap van Dongeren, Robert McCall and Os-
advantages over map-based approaches. The vari- waldo Morales Napoles for the fruitful discussions
ables of interest can be seen simultaneously, while in preparation of this article.
one map per variable is needed. They can eas-
ily be compared across storms. by conditioning on 5. REFERENCES
different water and wave heights, or across areas, Ahcrn, M., Kovats, R. S., Wilkinson, P, Few, R.,
by conditioning on areas. Adniittedly, as yet, we and Matthies, F. (2005). “Global health impacts of
have treated only maximum inundation depth, rel- ~ floods: epidemiologic evidence.” Epidemiologic re-
ative damage and absolute damage, but this qual- views, 27(1), 36-46.
ity grows when more flood consequences are inte- Bolle, A.7, Blanckaert, J " and Leyssen, G (%’014).
grated. Additionally, the BN presents the exact per- “Une méthode probabiliste pour la determination de
centage of inundated and damaged houses, an infor- 3We mean continuous according to the definition of Net-
mation which is not apparent after a quick glance on ica.

33



i’% 'RISC-KIT

D3.3 Bayesian Decision Support Tool

12th International Conference on Applications of Statistics and Probability in Civil Engineering, [CASP12

I’événement de réference et ses consequences pour
les ppl et ppri” Congres SHF: Modélisation opéra-
tionnelle de grands transitoires hydrauliques.

Corbella, S. and Stretch, D. D. (2013). “Simulating a
multivariate sea storm using Archimedean copulas.”
Coastal Engineering, 76, 68-78.

De Waal, D. and van Gelder, P. (2005). “Modelling of
extreme wave heights and periods through copulas.”
Extremes, 8(4), 345-356.

Den Heijer, C. (2013). “The role of bathymetry, wave
obliquity and coastal curvature in dune erosion pre-
diction.” Doctoral dissertation, Delft University of
Technology, Delft, The Netherlands.

Garrote, L., Molina, M., and Mediero, L. (2007). “Prob-
abilistic forecasts using bayesian networks calibrated
with deterministic raintall-runoff models.” Extreme
Hydrological Events: New Concepts for Security,
Springer, 173-183.

Guticrrez, B. T., Plant, N. G., and Thicler, E. R. (201 1).
“A Bayesian network to predict coastal vulnerability
to sca level rise.” Journal of Geophysical Research,
116(F2), F02009.

Hajat, S., Ebi, K., Kovats, R., Menne, B., Edwards, S.,
and Haines, A. (2005). “The human health conse-
quences of flooding in europe: a review.” Extrene
weather events and public health responses, Springer,
185-196.

Hapke, C. and Plant, N. (2010). “Predicting coastal cliff
erosion using a Bayesian probabilistic model.” Ma-
rine Geology, 278(1-4), 140-149.

Henriksen, H. J.. Rasmussen, P., Brandt, G., von Biilow,
D., and Jensen, F. V. (2007). “Public participation
modelling using Bayesian networks in management
of groundwater contamination.” Environmental Mod-
elling & Software, 22(8), 1101-1113.

Hervouet, J.-M. (2000). “TELEMAC modelling system:
an overview.” Hydrological Processes, 14(13), 2209—
2210.

Jensen, F. (1996). An introduction to Bayesian networks.
University College London Press, London.

Jonkman, S. N., Bockarjova, M., Kok, M., and Bernar-
dini, P. (2008a). “Integrated hydrodynamic and eco-
nomic modelling of flood damagc in the Nether-
lands.” Ecological Economics, 66(1), 77-90.

Jonkman, S. N., Vrijling, J. K., and Vrouwenvelder, A.
C. W. M. (2008b). “Methods for the estimation of loss
of life due to floods: a literature review and a proposal
for a new method.” Natural Hazards, 46(3), 353-389.

Leyssen, G., Mercelis, P., De Schoesitter, P., and Blanck-

Vancouver, Canada, July 12-15, 2015

aert, J. (2013). “Generation of multivariate near shore
extreme wave conditions based on an extreme value
copula for offshore boundary conditions..” EGU Gen-
eral Assembly Conference Abstracts, Vol. 15, 10094.

Li, F, van Gelder, P, Ranasinghe, R., Callaghan, D.,
and Jongejan, R. (2014). “Probabilistic modelling of
extreme storms along the Dutch coast.” Coastal Engi-
neering, 86, 1-13.

Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.

(2010).

“Review article "Assessment of economic

"

flood damage"”” Natural Hazards and Earth System
Science, 10(8), 1697-1724.

Norsys (1995-2014). Netica. <www.norsys.com:.

Pearl, J. (1988). Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan
Kaufmann.

Roelvink, D., Reniers, A., van Dongeren, A., van Thiel
de Vries, J., McCall, R., and Lescinski, J. (2009).
“Modelling storm impacts on beaches, duncs and bar-
rier islands.” Coastal Engineering, 56(11-12), 1133—

1152.

Schroter, K., Kreibich, H., Vogel, K., Riggelsen, C.,

Scherbaum, F., and Merz, B. (2014).

“How use-

ful are complex flood damage models?” Water Re-
sources Reseaich, 50(4), 3378-3395.

Small, C. and Nicholls, R. J. (2003). “A global analy-
sis of human settlement in coastal zones.” Journal of
Coastal Research, 19(3), 584-599.

Vanneuville, W., Maddens, R., Collard, C., Bogaert,
P., de Maeyer, P., and Antrop, M. (2006). Impact
op mens en econoniie 1.g.v. overstromingen bekeken
in het licht van wijzigende hydraulische condities,
omgevingsfactoren en klimatologische omstandighe-
den. Ghent University.

Vogel, K., Riggelsen, C., Merz, B., Kreibich, H., and
Scherbaum, F. (2012). “Flood damage and influenc-
ing factors: A Bayesian network perspective.” Pro-
ceedings of the 6th European Workshop on Proba-
bilistic Graphical Models, 347-354.

Vogel, K., Riggelsen, C., Scherbaum, F., oter, K.,
Kreibich, H., and Merz, B. (2013). “Challenges (or
bayesian network learning in a flood damage assess-
ment application.” Proceedings of the 11th Interna-
tional Conference on Structural Safety and Reliabil-
iry, 3123-3130.

Warren, I. and Bach, H. (1992). “MIKE 21: a modelling
system for estuaries, coastal waters and seas.” Envi-
ronmental Software, 7(4), 229-240.

34



