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Executive Publishable Summary

This report describes the framework of the Bayesian-based decision support system
(DSS) for coastal multi hazards (RISC-KIT deliverable 3.3). By connecting hazard
intensities with socio-economic, environmental and cultural properties of different
receptor types, the DSS allows for the prediction of impacts resulting from coastal
multi-hazards for various hot spot areas.

Bayesian network (BN), the modeling approach used, is data driven model that
describes system relations in probabilistic terms. Generally, BNs are pre-fed with data
from which they “learn” relationships and can then be used to predict or diagnose
events. The graphical user interface is very similar to causal diagrams.

The DSS is based on data from hydrodynamic storm simulations, information on land
use and so-called vulnerability relationships. The approach can easily be applied to
any hot spot area. This report introduces the general framework and explains how the
system can be configured at individual sites. Moreover, demo DSS is presented for
the Belgian town of Zeebrugge, which can predict spatially varying inundation depths
and damages to buildings for different storm scenarios. Furthermore, it can be used to
diagnose under which storm conditions and where on the site the highest damages
occur.
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1 Introduction

Recent and historic low-frequency, high-impact events such as Xynthia (impacting
France in 2010), the 2011 Liguria (Italy) Flash Floods and the 1953 North Sea storm
surge which inundated parts of the Netherlands, Belgium and the UK have
demonstrated the flood risks faced by exposed coastal areas in Europe. Typhoons in
Asia (such as Typhoon Haiyan in the Philippines in November 2013), hurricanes in the
Caribbean and Gulf of Mexico, and Superstorm Sandy, impacting the northeastern
U.S.A. in October 2012, have demonstrated how even larger flooding events pose
significant risk and can devastate and immobilize large cities and countries.

These coastal zone risks are likely to increase in the future (IPPC, AR5) which requires
re-evaluation of coastal disaster risk reduction (DRR) strategies and new mix of

prevention (e.g. dike protection), mitigation (e.g. limiting construction in flood-prone
areas; eco-system based solutions) and preparedness (e.g. Early Warning Systems,
EWS) (PMP) measures. Even without change in risk due to climate or socio-
economic changes, re-evaluation is necessary in the light of growing appreciation
of ecological and natural values, which drive ecosystem-based or Nature-based flood
defense approaches. In addition, as free space is becoming sparse, coastal DRR plans
need to be spatially efficient, allowing for multi-functionality.

1.1 Project objectives

In response to these challenges, the RISC-KIT project aims to deliver set of open-
source and open-access methods, tools and management approaches to reduce risk
and increase resilience to low-frequency, high-impact hydro-meteorological events in
the coastal zone. These products will enhance forecasting, prediction and early
warning capabilities, improve the assessment of long-term coastal risk and optimise
the mix of PMP-measures. Specific objectives are:

1. Review and analysis of current-practice coastal risk management plans and
lessons-learned of historical large-scale events;

2. Collection of local socio-cultural-economic and physical data at case study sites
through end-user and stakeholder consultation to be stored in an impact-
oriented coastal risk database;

3. Development of regional-scale coastal risk assessment framework (CRAF) to
assess present and future risk due to multi-hazards (Figure 1.1, top panel);

4. Development of an impact-oriented Early Warning and Decision Support
System (EWS/DSS) for hot spot areas consisting of: i) free-ware system to
predict hazard intensities using coupled hydro-meteo and morphological
models and ii) Bayesian-based Decision Support System which integrates
hazards and socio-economic, cultural and environmental consequences (Figure
1.1, centre panel);

5. Development of potential DRR measures and the design of ecosystem-based
and cost-effective, (non-)technological DRR plans in close cooperation with
end-users for diverse set of case study sites on all European regional seas and
on one tropical coast (Figure 1.1; bottom panel);
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6. Application of CRAF and EWS/DSS tools at the case study sites to test the DRR
plans for combination of scenarios of climate-related hazard and socio-
economic vulnerability change and demonstration of the operational mode;

7. Development of web-based management guide for developing integrated
plans along Europe’s coasts and beyond and provide synthesis of lessons
learned in RISC-KIT in the form of policy guidance and recommendations at the
national and EU level.

The tools are to be demonstrated on case study sites on range of EU coasts in the
North- and Baltic Sea Region, Atlantic Ocean, Black Sea and Mediterranean Sea, and
one site in Bangladesh, see Figure 1.2. These sites constitute diverse geomorphic
settings, land use, forcing, hazard types and socio-economic, cultural and
environmental characteristics. All selected regions are most frequently affected by
storm surges and coastal erosion. management guide of PMP measures and
management approaches will be developed. The toolkit will benefit forecasting and
civil protection agencies, coastal managers, local government, community members,
NGOs, the general public and scientists.

1.2 Project structure

The project is structured into seven Work Packages (WP) starting with WP1 on ‘Data
collection, review and historical analysis’.; WP2–4 will create the components of the
RISC-toolKIT containing an ‘Improved method for regional scale vulnerability and risk
assessment’ (WP2), ‘Enhanced early warning and scenario evaluation capabilities for
hot spots’ (WP3) as well as ‘New management and policy approaches to increase
coastal resilience’ (WP4). The toolkit will be tested through ‘Application at case study
sites’ (WP5). WP6 will be responsible for ‘Dissemination, knowledge transfer and
exploitation’ and ‘Coordination and Management’ are handled in WP7.
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Figure 1.1: Conceptual drawing of the CRAF (top panel), the EWS (middle panel) and
the DSS (bottom panel)
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Figure 1.2: Case study sites (stars), RISC-KIT case study site partners (blue solid dots)
and non-case study site partners (red open circles).

1.3 Deliverable context and objective

The Description of Work states the objective and context of this Deliverable as follows:

“The Bayesian decision support system (DSS) connects physical hazards to socio-
economic, environmental and cultural properties of the receptor types, and the effects
of the DRR plans. The DSS will allow for the prediction of impacts of coastal multi-
hazards for the case study sites, including uncertainty bands. In this task we will
design the structure (nodes and relations) of the Bayesian network using the freeware
Netica package and supporting tool that generates impact data from hazard
intensities and receptor attributes using the vulnerability relations compiled under
WP2 (Task 2.2). This tool will be used in WP5, Task 5.3 to train the system for each
case study site

The deliverable of this task is demo Bayesian DSS and supporting tool (D.3.3, this
deliverable [added]), including configuration manuals which will be made available
through the project website. We will organize first training session (Milestone 9) for
the partners in WP5 to set-up the DSS for their case study sites. Once the scenarios are
run in WP5, Task 5.4, second training session will be given on how to incorporate the
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scenario data in the Bayesian network and on how to visualize the results.”

This deliverable is demonstration Bayesian DSS, based on the freeware Netica
(Norsys 2014) package and supporting tool that generates impact data from hazard
intensities and receptor attributes using the vulnerability relations compiled under
WP2. The tool and configuration manual (contained in this document) will be made
available through the project website.

This deliverable addresses the objective of WP and Project Objective and the
quoted text from the “Description of Work” above, by providing the framework for the
DSS part of the EWS/DSS for hot spot areas.

1.4 Approach

The idea is that Bayesian DSS can be built for an arbitrary site. In RISC-KIT all case
study site partners (CSPs) will set up an individual DSS for the local hot spot area of
their case study site (cf. Figure 1.2) to exemplify its general applicability (RISC-KIT
project Milestone 10 resulting from task 5.2: EWS/DSS systems set up for each case
study site).

While this deliverable report addresses the RISC-KIT CSPs, its guidelines can be
consulted by anyone to set up DSS for any case study site.

1.5 Outline of the report

This report is structured as follows. Section gives more detailed account on the
objective of the task and describes the knowledge gaps it addresses. Section
introduces the framework of the DSS. It describes the general structure and types of
variables of the DSS and contains configuration instructions. Section presents
demo version of the tool for the hot spot Zeebrugge. Section concludes the report.
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2 Research Gap and Objective of Task

Researchers across many disciplines are dedicated to developing methodologies that
identify risks and to helping decision makers design effective risk reduction plans. On
the one hand they apply numerical hydrodynamic process models to assess the
natural coastal response and the extent of flooding due to storms. In this project
among others XBeach, TELEMAC and LISFLOOD are used. On the other hand they use
vulnerability relations to estimate potential impacts for those receptors that are
exposed to coastal hazards, e.g. depth damage curves. Many more examples can be
found in the Coastal Vulnerability Indicator (CVI) Library (Deliverable 2.2) that has
been developed within WP2 and addresses socio-economic, environmental and
cultural impacts (Viavattene et al. 2015).

Integrated assessment methods are still rare. Ideally, integrated models depict the
entire cause-effect chain from multiple coastal hazards to their diverse consequences
reflecting the complexity of the issue. They offer deeper insight in the design of short,
middle, or long-term DRR measures than single discipline models and help to avoid
unforeseen consequences of those measures (Rotmans et al. 1994). Recently, Jonkman
et al. (2008) proposed GIS-based approach to describe spatially varying flood
hazard and resulting estimates of direct physical damages to various objects, indirect
economic damage and the loss of life. The model presents the results of one typical
low probability-high impact flood scenario in the Netherlands with the help of maps.
Task 3.3 continues on the trend of integrating the separate modeling approaches into

homogeneous framework. The purpose is to compile impact estimates of many
different storm scenarios in Bayesian network (BN).

BNs are data based models that describe system relations in probabilistic terms. They
are pre-fed with data from which they “learn” relationships and then used to predict
or diagnose events. The graphical user interface is very similar to causal diagrams. An
example of such model is given in Figure 2.1 (and also in Figure 4.4 in section 4.3
where it is described in detail).

Figure 2.1: Demo Bayesian network

BNs have been applied number of times as tools for decision-making under
uncertainty. Hendriksen et al. (2007) conclude that they are very valuable for
negotiations and discussions between managers, experts, stakeholders and
representatives of the general public, among others, because they are transparent and
flexible tools. In the context of floods, Garrote et al. (2007) combine BNs and
deterministic rain run-off models to forecast flooding, and Vogel et al. (2012, 2013)
use BNs to estimate damages resulting from river floods. In coastal environments they
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have been applied to predict erosion and shoreline retreat (Den Heijer 2013; Gutierrez
et al. 2011; Hapke Plant 2010).

An advantage of BNs is their ability to handle various sources and types of data. The
BN framework developed for RISC-KIT combines information on the topography and
assets of the potentially affected area with simulation data of flood scenarios and
damage estimations from the CVI relations. More precisely, the framework relates
coastal storm impacts not only to erosion or flood extent, but also to near-shore storm
conditions, such as peak water level, maximum significant wave height or storm
duration. second major benefit, and generally speaking the main use of BNs, is the
possibility to update predictions according to the latest available information. In the
RISC-KIT context, the site-specific BNs are fed with numerous storm scenario
computations, based on which it will give general prediction of expected inundation
and impacts in the hotspot area. This prediction can be updated and tailored to an
approaching storm with the latest field observations or model predictions, without the
need for doing computationally expensive (near shore) simulations in real-time.

Because BNs are very light, they can be installed on stand-alone computers, laptops or
smart phones and still make consequence predictions for impending storms in real-
time. In contrast, the hydrodynamic process models, which are currently used to make
inundation predictions, are implemented on high performance computers due to
computational demand. Warnings and information on events thus need to be
distributed to decision makers in the field through ICT networks, which have high
vulnerability during extreme events. Also, because of the processing time for
computations, it is challenge to include local observations and rapidly changing
information that becomes available towards the peak of an event. Therefore, BNs are
more suitable than hydrodynamic process models to provide urgent decision support,
possibly in the field. Moreover, the BN enables planners to test risk reduction
measures for robustness against variety of storm scenarios, as long as these measure
have been included in the model set up.
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3 Framework

Each hot spot area (with those considered in RISC-KIT given in Figure 1.2) will have its
individual Bayesian DSS with different choice of variables. However, all models have
the same structure and link coastal hazards to impacts. In general, five categories of
variables can be distinguished: (1) Hazard boundary conditions, (2) receptors, (3)
local hazards, (4) impacts, and (5) DRR measures, defined below. The yellow boxes in
Figure 3.1 indicate (groups of) variable categories.

Figure 3.1: Structure of Bayesian DSS (compare with Figure 3.7 to see more detail)

3.1 The Variable Categories

This section explains the type of variables that belong to each box and provides
examples.

Hazard boundary conditions (BC)
This category contains hydraulic variables that characterize different storm scenarios.
Typically, they coincide with the maxima of the boundary conditions used in the
hydro- or morphodynamic models of the coastal FEWS-system. Choices can be e.g.
maximum significant wave height and period, peak water level (depicted in Figure 3.2)
predominant wave angle or storm duration.

Figure 3.2: Example of BC node
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Receptors (R)
In order to represent the spatial distribution of receptors the hot spot sites are
subdivided into several areas. The receptor variables indicate the receptors densities
in each area of the hot spot. Each receptor type is represented by one variable. The
CSPs decide which types are relevant for their site and which they wish to include in
the DSS. All receptor types for which vulnerability relationships are available in the
CVI library can be included. Examples are (different kinds of) buildings, ecosystems
and people. Figure 3.3 gives an example for the receptor type residential houses. Note
that 283 houses are 16.7% of the total number of houses.

Figure 3.3: Example of node

Hazards (H)
For each receptor type the DSS contains those hazard variables that are needed to
determine impact with the vulnerability relationships. For instance, scour may be
relevant variable for damage to buildings, but less so for loss of life. Other possible
choices of variables are e.g. maximum inundation depth, maximum flow velocity,
maximum flux or flood duration. Each variable indicates the proportions of receptors
that are (or the likelihood that an arbitrary receptor is) threatened by certain hazard
intensities, see Figure 3.4 for an example.

Figure 3.4: Example of node

Impacts (C1)
Similar to hazard variable, an impact variable indicates the proportions of receptors
that experience (or the likelihood of an arbitrary receptor to be experiencing) certain
impact intensities. Single or multiple hazard variables can be translated into impacts
using the transfer functions of the CVI library. Figure 3.5 shows node for relative
damage to residential houses derived from the maximum inundation depth node
shown in the previous figure.

1 “C” stands for consequence, because “I” will be used to abbreviate inundation later on.
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Figure 3.5: Example for node

Disaster Risk Reduction Measures
If data is available on the effect of DRR measures they can be included in the DSS. Each
measure is represented by one variable, which has at least two states. The first state
represents the “do nothing” option, while each additional state represents
alternatives. For example the node in Figure 3.6 reflects the DRR measure “increase
dike height”. Here, the original dike height is 3m and the proposed DRR options are to
increase the dike by either 1m or 2m.

Figure 3.6: Example of DRR node

3.2 Set-up of System Relations

As mentioned above the implementations of the DSS will vary per location. The case
study site partners will determine configuration that best suits their own hot spot
area. Figure 3.7 gives more detailed account of the generic DSS structure than Figure
3.1. It demonstrates the principal of how the individual variables are linked to each
other. The variable names are generic and can be considered “place holders” that will
be substituted for real variables by the CSPs.

The configuration steps that need to be taken by the partners are outlined in the
following sections. separate configuration manual is not needed (and will not be
provided), because the configuration process will be semi-automated and integrated
in Delft-FEWS (D3.1) by means of model adapter for the BN.

The model adaptor makes use of the Netica API so that the CSPs will not need to
interact with the Netica software directly to set up the system. In configuration step -
3, they will provide the necessary information to define the model structure and
supply data on receptors and vulnerability relationships, while in configuration step
the model adaptor uses this information to set up the system and the data from storm
simulations are integrated in the network.

While Figure 3.7 depicts the structure of the generic system, which can be extended
for more boundary conditions, receptors, local hazards, impacts or DRR measures, the
demonstration DSS in Figure 4.4 can be regarded as “minimal working example”. The
latter is published on the project website (“http://www.risckit.eu/np4/8/”) together
with this deliverable report.
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Figure 3.7: Illustration of system relations of the DSS for two receptor types. BC1 BC2
and BC3 represent hazard boundary conditions; R1 and R2 represent receptor
densities; H1_R1 H2_R1 and H3_R1 represent hazards affecting receptor type 1 H1_R2
and H4_R2 represent hazards affecting receptor type 2 C1_R1 and C2_R1 represent
impacts on receptor type 1 C3_R2 represents an impact on receptor type 2 DDR1 and
DDR2 represent DRR measures.

3.2.1 Configuration Step 1

The first step deals with the hazard boundary conditions and the DRR plans which
affect the hydro- or morphodynamics (e.g. dikes or beach nourishments). The more
hazard boundary conditions are incorporated and the finer the discretization (e.g. the
example node in Figure 3.2 has four bins and bin size of 0.5m.), the more storm
simulations are necessary. Moreover, each storm scenario needs to be simulated with
and without DRR measure in place. In other words, there is trade-off between
simulation effort and detail of the DSS. To find the right configuration, all CSPs are
asked to answer the following questions:

1. How many hazard boundary conditions do you wish to include and which ones?
2. For each condition, what are the minimum value, the maximum value and the

desired bin size?
3. What is the joint probability distribution of the hazard boundary conditions (in

discretized format according to the specified bins)? If this information is not
available an assumption can be made, e.g. like in the demonstration BN
described in section 4.2.1.

4. How many DRR options do you wish to implement (total of all DRR measures
including zero options)?

Based on the answers minimum number of model runs are determined and hazard
boundary conditions for each run are proposed. This process is semi-automated and
ensures that sufficient number of data points fall within each bin. If the number of
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model runs does not match the simulation capacity of the CSPs, they can reduce their
model complexity or try to expand their computational capacity.

The number of nodes, their names and bins define the BN model and are saved as part
of the so-called “ModelDataSetFiles” of Delft-FEWS by the CSPs. When the DSS is
started from Delft-FEWS, these files are used to set up the DSS in the software Netica.
This will be explained at the last configuration step.

3.2.2 Configuration Step 2
Configuration step focuses on georeferencing the receptors in specific way.
Foregoing is the subdivision of the hot spot into smaller areas. CSPs will decide on the
division themselves. It can be based on administrative districts or zones of similar
hazards. The latter is recommended and can rest on expert judgment or analysis of
flood patterns in multiple storms.

The following information is needed for each individual receptor:

1. What type of receptor is it?
2. To which area of the hot spot does it belong?
3. Which grid point(s) of the hydrodynamic model correspond(s) to its location?

(This can for example be done in GIS software by comparing shapefile
containing the locations of the receptor with the model grid.)

This information will be provided by the case study site partners in format similar to
the one given in Table 3.1 and is saved as part of the ModelDataSetFiles.

Table 3.1: Example table for the DSS specific georeferencing of receptors (format may
be subject to change)

Receptor ID Receptor Type Grid point ID Area ID

1 Residential House [931, 932, 935]

3.2.3 Configuration Step 3
In this step the hazard and impact variables are defined. First, CSOs consult the CVI
library and identify which vulnerability relationships are applicable at the hot spot
level to the receptor types identified in step 2. The relationships define which impacts
can be computed for each receptor and which hazard variables are needed as input.
For instance, the maximum flux may be needed to compute risk of life. Second, CSOs
decide on the desired bin sizes for the impact variables, which typically dictate the bin
sizes for the hazard variables as well. Third, the CSOs write table for each relevant
vulnerability relationship as exemplified in Table 3.2.

Again, the information on the choice of variables and bin sizes is stored as part of the
ModelDataSetFiles in Delft-FEWS.
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Table 3.2: Example format of CVI table for DSS. (This table corresponds to the DSS
shown in Figure 1.1)

Inundation depth [m] Relative damag to residential buildings [%]

0 0

0 0

0.5 23.5

1 47

2 50

3.2.4 Configuration Step 4

When the BN is started from Delft-FEWS, the ModelDataSetFiles are used to set up the
DSS in the software Netica. The BN model adapter reads the ModelDateSetFiles and
sets up the DSS up for each hot spot (RISC-KIT project Milestone 10 resulting from
task 5.2: EWS/DSS systems set up for each case study site). Thereafter, the Bayesian
network will be trained and used with data from storm simulations (RISC-KIT project
tasks 5.3 and 5.4).

In this context it is also important to adhere to naming system for the netcdf output
files. The data in the netcdf together with its name and the ModelDataSetFiles need to
contain all information about the scenario that has been run and if DRR measure has
been applied which one. The names should be as follows

YYYYMMDD_modelX_mAbinN_mBbinM.netcdf

where mA stands for measure A, mB stands for measure and and are bin
numbers. At the same time table is supplied to the ModelDataSetFiles, which
translates mA, mB, to their official variable name in binN, binM, to their official
bin names. modelX can be anything and is chosen by the CSPs. For example, the name
20150331_modelX_mAbin1_mBbin2.netcdf together with Table 3.3 indicates that the
model has been run with 3m high dike and beach nourishment.

Table 3.3: Example of variables names

Variable code Variable name Bin code States State titles

mA Dike height bin1

bin2

bin3

3m

4m

5m

mB Beach
nourishment

bin1

bin2

No

Yes

No

Yes
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4 Demonstration of the Bayesian DSS

This section describes the Bayesian DSS in its simplest form and functionality. The
demo DSS has been developed for the site of Zeebrugge, Belgium. This model has been
developed in (Jäger et al. 2015), which contains more technical details and can be
found in Appendix A.

4.1 Brief Introduction to the Zeebrugge Site

Zeebrugge is residential town and seaside resort on the North Sea Coast and location
of Belgium’s second largest harbor. The harbor consists of three parts. The outer and

inner ports are shown in

Figure 4.. The outer port is constructed on reclamation ground and is protected by two
breakwaters. It has direct access to the sea and sufficiently deep water for roll-on/roll-
off and container traffic. Also, LNG vessels moor here. The Pierre Vandamme lock
(East/ right in the figure) and the Visart lock (West/ left in figure) connect the tidal
outer port with the non-tidal inner port. The docks of the inner port accommodate
logistic centers for handling, storage and distribution of e.g. new cars, break bulk or
food products. The Baudouin canal (South/ bottom of the figure) leads to the seaport
of Bruges. The activities in this part of the port mainly involve bulk and conventional
cargoes.

The hot spot is the old town of Zeebrugge, which is mainly residential. It is located
between the inner and outer port and the two locks. scheme can be seen in Figure
4.1.
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Figure 4.2: Port and old town of Zeebrugge (© Luchtfotografie Henderyckz)

4.2 Input Data

This section describes the data that has been used to train the Bayesian network for
each of the variable categories. DRR measure is not yet included in the demo
version.

4.2.1 Hazard Boundary Conditions
The demo DSS uses simple synthetic storm climate that consists of 25 realistic storm
scenarios. They are combinations of five water level time series with different peak
water levels, z varying between 6.35m and 7.9m and five wave time series with
different maximum significant wave heights, h, varying between 5.2m and 6.2m (see
Table 4.1). This choice covers range of storms with return periods from about 100
years to more than 10000 years. For each combination 46 hours storm has been
simulated, which corresponds to three high tides. For simplicity, Z and are assumed
to be independent and have discrete uniform probabilities of occurrence in 100 years,
i.e. 20%, where the time frame is chosen arbitrarily. Hence, each storm scenario
occurs within the next 100 years with probability of 4%.

Table 4.1: Wave heights and water levels for the test matrix

Water level [m TAW] 6.35 7.1 7.4 7.8 7.9
Wave height [m]
5.20
5.70
5.90
6.08
6.20
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4.2.2 Receptors

The demo DSS is limited to residential houses as receptors. Because the depth-damage
curve to be used in the impact estimation (see section 4.2.4) does not distinguish
between different kinds of houses, all residential houses are modeled as the same
receptor type.

Of relevance to the DSS are the spatial distributions of residential houses, which is
captured by dividing the hot spot area into four areas (Figure 4.2) and by counting the
number of houses for each area (Table 4.2). This information stems from the cadastral
map that has been collected in WP1.

Table 4.2: Number of houses per area

Area 1 2 3 4 Total

Houses 283 759 383 273 1698

4.2.3 Hazards
Maximum inundation depth patterns are obtained through numeric simulation of
storm scenarios. The simulations focus on overtopping North of the old time, close to
the Vandamme lock, and do not take into account flooding from the basin in the West.
Because NNW is the most critical wave direction for this effect, it is used in all
scenarios. The overtopping discharge time series is input for TELEMAC 2D model,
which calculates the dynamic behavior of the flooding on land and from which the
maximum inundation for each grid point can be inferred. An example of an inundation
map is given in Figure 4.1.

Figure 4.1: Example of maximum inundation depth map of Zeebrugge

The individual locations of residential houses are known from the data collection in
task 1.2 and can be matched to the model grid points. For the Zeebrugge case, this has
been done by comparing shape file with the gridded output of the hydrodynamic
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model. For every storm scenario, each house is associated with maximum inundation
depth. For houses that are located in between grid points the inundation depths are
interpolated. The maximum inundation depths never exceeded 2m for any house.

4.2.4 Impacts

The relative damage per house (in terms of the maximum possible damage), is
calculated with the depth damage curve for residential houses in Flanders, Belgium, by
(Vanneuville 2003). This curve is also part of the CVI library (Viavattene et al. 2015). It
is depicted in Figure 4.3 and provides functional relationship between maximum
inundation depth and relative damage. If an average house value is known, an
indication can be given for the absolute damage per house. For this demo DSS, an
average house value of 100,000€ is assumed. Because the maximum inundation
depths never exceeded 2m, the maximum attainable relative and absolute damage in
this demo case are 50% and 50,000€, respectively.

Figure 4.2: Residential houses and subdivision in areas

Figure 4.3: Depth-damage curve for Flanders, Belgium

4.3 Examples of Use

Before turning to specific examples of use, it is important to understand that the
reliability of the Bayesian DSS results leans on the quality of the underlying data and
models. Note especially that while the demo DSS is based on the hot spot Zeebrugge, it
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makes strong simplifying assumption about the storm scenarios and does not reflect
real storm climate at the site.

4.3.1 The Basic State of the DSS

Figure 4.4 shows the Bayesian DSS in its basic state giving default prediction. It has
seven probabilistic nodes, Peak water level (Z), Max. significant wave height (H), Area
(B), Maximum inundation depth (I), Number of Houses (N), Relative damage (D and
Absolute damage (D_Euro), and one constant node, Average house value (v) Each
probabilistic node shows the states that the variable can be in, the probabilities of
being in these states as well as the mean and standard deviation, while the value of the
constant node is fixed. The nodes are connected with arrows, which indicate
probabilistic influence on the node at the arrowhead from the node at the other end.
Most of the time these influences can be regarded as cause and effect relationships.

and H characterize storm event. Based on our assumption (cf. section 4.2.1),
future storm has any of the five peak water levels with probability of 20% and
independently thereof any of the five maximum significant wave heights with
probability of 20%.

B and N summarize the case study site. B indicates that if we randomly select house,
just like drawing ball from an urn, the probability of selecting house that is within
area is 16.7%, because this percentage of houses are located there. To be precise 283
houses out of total of 1698 are situated in area according to N Similarly 44.7%
(759) are in area 2, 22.6% (383) are in area 3, and 16.1% (273) are in area 4.
Naturally, B and N are linked, as expressed by the arrow. But even more is
completely determined by B, in other words their relationship is deterministic, which
is indicated by the slightly darker shade of this node.

I is an indicator for the hazard intensity at the hot spot. It is influenced by Z and H
because greater storm magnitudes are more likely to cause flooding and by B because
the different areas in the hot spot are not equally prone to flooding. The incoming
arrows indicate this. In the base state of the DSS node I represents, intuitively
speaking, the average proportion of houses that are inundated up to certain level2

32.3% of the houses are expected to never experience inundation, 44.5% of the houses
are up to 0.5m inundated, 20.3% of the houses are up to 1m inundated, and 2.95% of
the houses are up to 2m inundated. This is equivalent to saying that an arbitrary house
in the hot spot area has chance of never being inundated of 32.3% and so on.

D and D_Euro are translations of inundation depths to relative damage estimates
based on the damage curve and absolute damage estimates using an average house
value of 100,000€3 respectively. The relationship is deterministic and, hence, the
nodes are darker. By modifying node the average value can easily be changed.

2If we consider, for example, two equally likely storm scenarios, the first one causing 1% of
the houses to inundate at least 2m and the second one 5%, then the average proportion
would be 0.5*1% + 0.5*5% = 3%.
3 Note that Netica uses the dot both as decimal and thousands separator which can be
confusing.
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Figure 4.4: Expected storm impacts in the hot spot area

4.3.2 Predicting Impacts

Making impact predictions in real time is relevant during the event phase (from
several days before the storm until it has passed) as well as the planning phase. Some
examples for the event phase are given below, but the use of the DSS is not limited to
them. In the planning phase this mode can for instance be used to explore and discuss
the impacts of different storm scenarios and DRR measures during round table
discussions.

few days ahead the magnitude of storm, which is estimated with large-scale
meteorological models, can be somewhat uncertain. For instance, high water levels
reaching at least 7.8m are expected, but estimates on wave heights are not available.
In this case the DSS can be “conditioned” or “updated” on what is known, which is
shown in Figure 4.5. Because the demo storm climate contains only two peak water
level scenarios greater or equal to 7.8m, the user has set the distribution of to 50%
chance for Z=7.8m and Z=7.9m each. This choice means that he/she is entirely
uncertain as to if one or the other will occur. As no additional information is available
for wave heights, node H maintains his prior distribution. Updating on one node
changes the probability distributions of all nodes that are influenced by it. Here,
updating H changes I D and D_Euro Compared to the default prediction, the
probabilities for higher inundation depths and damages have increased.

Figure 4.5: Predicting impacts in the hot spot area of storm with Z 7.8m and
uncertain wave height

If, towards the peak of the storm event, the user gains more accurate knowledge on
the hazard boundary conditions, he/she can update the corresponding nodes to
reduce the uncertainties. Figure 4.6 exemplifies this for Z=7.8m and H=5.9m, where
the peak water level and maximum wave height are more constrained. The BN reacts
to this decreased uncertainty in the hazard boundary conditions by shifting the
distribution of node to lower values. On the contrary, the distribution is shifted to
higher values, when conditioning on 7.9m instead of Z=7.8m (not illustrated in this
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report). The expected impacts are less severe than in the previous, more uncertain
scenario.

Figure 4.6: Predicting impacts in the hot spot area of storm with Z=7.8m and H=5.9m

By conditioning on an area, i.e. node A, the user can obtain more specific information
on the individual areas within the hotspot. In Figure 4.7 the demo DSS is conditioned
on the same storm as before and on area 1. It demonstrates that houses in area are
especially at risk. For instance, 20.5% of the houses in this area are expected to be
inundated up to 2m, whereas the proportion of all houses in the hot spot area is only
3.41%.

Figure 4.7: Predicting impacts of storm with Z=7.8m and H=5.9m specifically for area
1

4.3.3 Diagnosing Storms
Especially in the planning phase, it can be useful to diagnose the conditions under
which impact occurs or does not occur. The DSS in Figure 4.8 is conditioned on the
topmost absolute damage, which coincides with the highest states of the relative
damage and maximum inundation depth variables, to understand where in the hot
spot area and at which storm magnitudes it occurs. house is most likely to suffer this
high damage if it is located in area and the more severe the storm scenario is,
foremost the peak water level. The almost uniform distribution of the wave height
suggests that this hazard boundary condition is not important for this case. Moreover,
houses in area will never incur maximum damage under any storm and no house at
all will incur maximum damage, if the peak water level does not exceed 6.35m.
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Figure 4.8: Diagnosing which storm scenarios can cause maximum damage
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5 Conclusion

This report presented RISC-KIT deliverable 3.3, the Bayesian DSS, which can link
offshore storm conditions to hazards and impacts at selected hot spot areas. The main
advantage of such system is threefold. First, the DSS can make impact predictions in
real time and it can thus support emergency managers in urgent decision-making. In
contrast new simulation with hydrodynamic process model would be
computationally expensive and time consuming. Second, the DSS enables planners to
test DRR measures for robustness against variety of storm scenarios, as long as these
measures have been considered in the model set up. Third, the DSS can diagnose
under which storm conditions and where on the site the highest, medium or no
damages occur.

The framework of the DSS is generic and suitable for any case study site, also for sites
outside the RISC-KIT project. The underlying modeling approach is using Bayesian
network (BN). These types of models describe the relationships between system
variables in terms of probabilities and have an interactive user interface which
resembles casual diagram.

RISC-KIT’s DSS links five categories of variables to each other:

1. Hazard boundary conditions, e.g. peak water levels during storm;
2. Spatial distributions of different receptor types, e.g. of residential houses;
3. Spatial distributions of hazard intensities, e.g. maximum inundation depths at

the locations of residential houses;
4. Spatial distribution of impact intensities, e.g. relative damages to residential

houses; and
5. DRR measures, e.g. alternative height options for new dike.

In order to set up the DSS, CSPs need:

discrete joint probability distribution of hazard boundary conditions at their
site;
Detailed land use information of their site;
Vulnerability relationships for the receptor types of interest, i.e. transfer
functions from hazard to impacts such as depth-damage curves; and
Sufficient computational capacity to simulate multiple storms and their
hydrodynamic and morphological effects on the hinterland.

As illustrated by the demo DSS, fully functional system can be built for single
receptor type with very few data on the storm climate. In general, one can make start
with such limited system for any case study site and extend the network as soon as
more data on hazard conditions, receptors or vulnerabilities becomes available.
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Figure 2: Residential buildings and areas at casestudy
site

Table 1: Number of residential buildings per area

Area 1 2 3 4

Number of buildings 283 759 383 273

2.3. Maximum Inundation Depth and Damage
We obtain maximum inundation patterns through
numeric simulation of storm scenarios. The simu-
lations focus on overtopping North of the old town
and donot takeinto account ooding from thebasin
in theWest. BecauseNNW isthemost critical wave
direction for this effect, it is used in all scenarios.
The overtopping discharge time series is input for
a TELEMAC 2D model, which calculates the dy-
namic behavior of the ooding on land and from
which the maximum inundation depth can be in-
ferred for each grip point, and by interpolation for
each house. An example is given in Figure 3.

We introduce anode maximum inundation depth
(of an arbitrary house under an arbitrary storm
scenario, more details in section 3), I , to the
BN which is Z, H and A’s child, and discretize
its distribution into four intervals { i1, i2, i3, i4} =
{ [0m] ,(0m,0.5m] , (0.5m,1m] , (1m,2m]} . Then the
conditional probabilities can bespeci ed as

P(I = i j | A = a,Z = z,H = h) (2)

=
ni j ,a,z,h

na

for j = 1...4, where na is the number of houses in
area a and na,i j ,z,h is the number of houses in area
a with maximum inundation depth i j under storm
scenario { z,h} .

Figure3: Example of an Inundation map for Zeebrugge
and surroundings. The North Sea is to the North.

Figure4: Depth-damagecurve for Flanders, Belgium

The relative damage per house (in terms of max-
imum possible damage), d, is calculated with the
depth-damage curve for residential houses in Flan-
ders, Belgium, by Vanneuville et al. (2006). This
curve is depicted in Figure 4 and provides a func-
tional relationship between I and D. Assuming an
average value per house, v, an indication can be
given for the absolute damage per house in AC, dAC.
As an example, the BN here has v = 100000 AC and
is represented as a constant node in the gures.2

3. INTERPRETATION OF THE COA STA L STORM
IMPACT MODEL

The resulting BN is shown in Figure 5. At its heart
isnode I . Thisnodecan be interpreted in two ways,
which aredescribed in separatesectionsbelow. The
same applies to the two damage nodes, which are
merely translations from the maximum inundation

2Note that constant nodes do not have arcs in Netica

4
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